AI Article Synopsis

  • APOBEC3G (A3G) is a protein that helps block HIV-1 replication through two main mechanisms, but HIV-1 Vif can degrade A3G, making it a target for new therapies.
  • A high-throughput screening of a library of 307,520 compounds led to the discovery of a compound (N.41) that inhibits the interaction between A3G and Vif, enhancing A3G's antiviral effects in specific T cells.
  • N.41 shows strong antiviral activity and potential for improved versions, providing a promising avenue for HIV treatment by restoring A3G's function against the virus.

Article Abstract

APOBEC3G (A3G) is a cellular cytidine deaminase that restricts HIV-1 replication by inducing G-to-A hypermutation in viral DNA and by deamination-independent mechanisms. HIV-1 Vif binds to A3G, resulting in its degradation via the 26 S proteasome. Therefore, this interaction represents a potential therapeutic target. To identify compounds that inhibit interaction between A3G and HIV-1 Vif in a high throughput format, we developed a homogeneous time-resolved fluorescence resonance energy transfer assay. A 307,520 compound library from the NIH Molecular Libraries Small Molecule Repository was screened. Secondary screens to evaluate dose-response performance and off-target effects, cell-based assays to identify compounds that attenuate Vif-dependent degradation of A3G, and assays testing antiviral activity in peripheral blood mononuclear cells and T cells were employed. One compound, N.41, showed potent antiviral activity in A3G(+) but not in A3G(-) T cells and had an IC50 as low as 8.4 μM and a TC50 of >100 μM when tested against HIV-1Ba-L replication in peripheral blood mononuclear cells. N.41 inhibited the Vif-A3G interaction and increased cellular A3G levels and incorporation of A3G into virions, thereby attenuating virus infectivity in a Vif-dependent manner. N.41 activity was also species- and Vif-dependent. Preliminary structure-activity relationship studies suggest that a hydroxyl moiety located at a phenylamino group is critical for N.41 anti-HIV activity and identified N.41 analogs with better potency (IC50 as low as 4.2 μM). These findings identify a new lead compound that attenuates HIV replication by liberating A3G from Vif regulation and increasing its innate antiviral activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4400358PMC
http://dx.doi.org/10.1074/jbc.M114.626903DOI Listing

Publication Analysis

Top Keywords

antiviral activity
12
vif-dependent degradation
8
hiv-1 vif
8
identify compounds
8
peripheral blood
8
blood mononuclear
8
mononuclear cells
8
ic50 low
8
low μm
8
a3g
7

Similar Publications

Assembly and functional mechanisms of plant NLR resistosomes.

Curr Opin Struct Biol

January 2025

School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China. Electronic address:

Nucleotide-binding and leucine-rich repeat (NLR) proteins are essential intracellular immune receptors in both animal and plant kingdoms. Sensing of pathogen-derived signals induces oligomerization of NLR proteins, culminating in the formation of higher-order protein complexes known as resistosomes in plants. The NLR resistosomes play a pivotal role in mediating the plant immune response against invading pathogens.

View Article and Find Full Text PDF

Preventive interventions are expected to substantially improve the prognosis of patients with primary liver cancer, predominantly hepatocellular carcinoma (HCC) and cholangiocarcinoma. HCC prevention is challenging in the face of the evolving etiological landscape, particularly the sharp increase in obesity-associated metabolic disorders, including metabolic dysfunction-associated steatotic liver disease (MASLD). Next-generation anti-HCV and HBV drugs have substantially reduced, but not eliminated, the risk of HCC and have given way to new challenges in identifying at-risk patients.

View Article and Find Full Text PDF

Background: On demand, topical PrEP is desired by those preferring episodic, nonsystemic PrEP. PC-1005 gel (MIV-150, zinc, and carrageenan) exhibits in vitro antiviral HIV-1, human papillomavirus (HPV), and herpes simplex virus type 2 (HSV-2) activity, attractive for a multipurpose prevention technology candidate. We evaluated the safety, pharmacokinetics, and antiviral effect of rectally applied PC-1005.

View Article and Find Full Text PDF

Peptide-based therapeutics are gaining attention for their potential to target various viral and host cell factors. One notable example is Pep19-2.5 (Aspidasept), a synthetic anti-lipopolysaccharide peptide that binds to heparan sulfate proteoglycans (HSPGs) and has demonstrated inhibitory effects against certain bacteria and enveloped viruses.

View Article and Find Full Text PDF

COVID-19 disease, triggered by SARS-CoV-2 virus infection, has led to more than 7.0 million deaths worldwide, with a significant fraction of recovered infected people reporting postviral symptoms. Smart surfaces functionalized with nanoparticles are a powerful tool to inactivate the virus and prevent the further spreading of the disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!