Purpose: Photographic film is widely used for the dose distribution verification of intensity-modulated radiation therapy (IMRT). However, analysis for verification of the results is subjective. We present a novel method for marking the isocenter using irradiation from a megavoltage (MV) beam transmitted through slits in a multi-leaf collimator (MLC).
Methods: We evaluated the effect of the marking irradiation at 500 monitor units (MU) on the total transmission through the MLC using an ionization chamber and Radiochromic Film. Film dosimetry was performed for quality assurance (QA) of IMRT plans. Three methods of registration were used for each film: marking by irradiating with an MV beam through slits in the MLC (MLC-IC); marking with a fabricated phantom (Phantom-IC); and a subjective method based on isodose lines (Manual). Each method was subjected to local γ-analysis.
Results: The effect of the marking irradiation on the total transmission was 0.16%, as measured by a ionization chamber at a 10-cm depth in a solid phantom, while the inter-leaf transmission was 0.3%, determined from the film. The mean pass rates for each registration method agreed within ± 1% when the criteria used were a distance-to-agreement (DTA) of 3 mm and a dose difference (DD) of 3%. For DTA/DD criteria of 2mm/3%, the pass rates in the sagittal plane were 96.09 ± 0.631% (MLC-IC), 96.27 ± 0.399% (Phantom-IC), and 95.62 ± 0.988% (Manual).
Conclusion: The present method is a versatile and useful method of improving the objectivity of film dosimetry for IMRT QA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmp.2015.02.003 | DOI Listing |
Vet Radiol Ultrasound
January 2025
Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, Missouri, USA.
Strontium-90 plesiotherapy delivers high doses of radiation to superficial lesions (<3 mm depth) with excellent sparing of deeper tissues. The sealed-source applicator tip is circular and 8-10 mm in diameter. Larger treatment fields are treated with multiple overlapping fields.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia.
Purpose: Due to the extensive use of radiation in various fields, such as food safety, sterilizing surgical materials, and medical diagnostics, it is essential to minimize radiation exposure for both patients and healthcare professionals, even at low doses. To meet this requirement, a composite film has been developed using polyvinyl alcohol (PVA) polymer and nitro blue tetrazolium (NBT) dye to measure low radiation doses effectively.
Methods: Various concentrations of NBT dye (ranging from 0.
Phys Med
January 2025
IRCCS San Raffaele Scientific Institute, Experimental Imaging Center, Milan, Italy. Electronic address:
Purpose: Minibeam radiotherapy (MBRT) uses small parallel beams of radiation to create a highly modulated dose pattern. The aim of this study is to develop an optical radioluminescence imaging (RLI) approach to perform real-time dose measurement for MBRT.
Methods: MBRT was delivered using an image-guided small animal irradiator equipped with a custom collimator.
Health Phys
January 2025
Department of Physics, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, M5B 2K3.
This study elucidated the radiation response characteristics of a Gafchromic radiochromic film subjected to low photon doses of ≤50 mSv, which corresponds to the annual whole body effective dose limit for radiation workers in Canada. Radiochromic films are investigated for possible use as a complementary tool for the Canadian Armed Forces that can be worn in addition to their existing personal dosimetry to quickly assess personal radiation dose received from radiological hazards without reliance on electronics. The films were exposed to varying photon energies emanating from x-ray generators and radioisotopes, specifically cesium-137, cobalt-60, and americium-241.
View Article and Find Full Text PDFMed Phys
January 2025
Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada.
Background: A stemless plastic scintillation detector (SPSD) is composed of an organic plastic scintillator coupled to an organic photodiode. Previous research has shown that SPSDs are ideally suited to challenging dosimetry measurements such as output factors and profiles in small fields. Lacking from the current literature is a systematic effort to optimize the performance of the photodiode component of the detector.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!