Oriented clay nanopaper from biobased components--mechanisms for superior fire protection properties.

ACS Appl Mater Interfaces

†Department of Fiber and Polymer Technology, Wallenberg Wood Science Center, Royal Institute of Technology, SE-10044 Stockholm, Sweden.

Published: March 2015

The toxicity of the most efficient fire retardant additives is a major problem for polymeric materials. Cellulose nanofiber (CNF)/clay nanocomposites, with unique brick-and-mortar structure and prepared by simple filtration, are characterized from the morphological point of view by scanning electron microscopy and X-ray diffraction. These nanocomposites have superior fire protection properties to other clay nanocomposites and fiber composites. The corresponding mechanisms are evaluated in terms of flammability (reaction to a flame) and cone calorimetry (exposure to heat flux). These two tests provide a wide spectrum characterization of fire protection properties in CNF/montmorrilonite (MTM) materials. The morphology of the collected residues after flammability testing is investigated. In addition, thermal and thermo-oxidative stability are evaluated by thermogravimetric analyses performed in inert (nitrogen) and oxidative (air) atmospheres. Physical and chemical mechanisms are identified and related to the unique nanostructure and its low thermal conductivity, high gas barrier properties and CNF/MTM interactions for char formation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am509058hDOI Listing

Publication Analysis

Top Keywords

fire protection
12
protection properties
12
superior fire
8
oriented clay
4
clay nanopaper
4
nanopaper biobased
4
biobased components--mechanisms
4
components--mechanisms superior
4
fire
4
properties
4

Similar Publications

Firefighters are exposed to the risk of burns at fire scenes. In 2020, the National Fire Agency of the Republic of Korea surveyed 50,527 firefighters and identified 242 burn-related incidents. The body parts affected by these burns were the hands (28.

View Article and Find Full Text PDF

Chemical industries are highly vulnerable to accidental events or terrorist attacks due to their processing, storage, and transportation of explosive, flammable, and toxic materials. Major industrial risks include fire, explosion, and toxic chemical release. An effective risk evaluation system is essential to prevent accidents or terrorist attacks.

View Article and Find Full Text PDF

The Asian Needle Ant, (Hymenoptera: Formicidae), has spread throughout a substantial portion of the southeastern United States where it has primarily been restricted to low elevations. We focused on the . invasion in Great Smoky Mountains National Park (GSMNP).

View Article and Find Full Text PDF

Terrestrial nanoparticles and geospatial optics: Implications for environmental impact from anthropogenic contaminants in the Caribbean region.

Sci Total Environ

January 2025

Centre of Molecular and Environmental Biology (CBMA), Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal.

Atmospheric contaminants from natural processes and anthropogenic activities pose a major problem to the environment. Here we analyze the dynamics of atmospheric and terrestrial contaminant concentrations in sediments containing chemical elements, such as nanoparticles (NPs) and ultrafine particles in hydrological sources of the Caribbean region of Colombia. Terrestrial sediments were collected from 2022 to 2024, and quantified for major chemical elements in the form of NPs and ultrafine particles in runoff receiving areas along the banks of Colombia's Ciénaga Grande in Santa Marta Bay, on the Isla de Salamanca.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!