Altered esophageal histamine receptor expression in Eosinophilic Esophagitis (EoE): implications on disease pathogenesis.

PLoS One

Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.

Published: November 2015

Eosinophilic Esophagitis (EoE) is a chronic allergic disorder, whose pathobiology is incompletely understood. Histamine-producing cells including mast cells and basophils have been implicated in EoE. However, very little is currently known about the role of histamine and histamine receptor (HR) expression and signaling in the esophageal epithelium. Herein, we characterized HR (H1R, H2R, H3R, and H4R) expression in human esophageal biopsies and investigate the role of histamine signaling in inducible cytokine expression in human esophageal epithelial cells in vitro. HR expression was quantified in esophageal biopsies from non-EoE control (N = 23), inactive EoE (<15 eos/hpf, N = 26) and active EoE (>15 eos/hpf, N = 22) subjects using qRT-PCR and immunofluorescent localization. HR expression and histamine-mediated cytokine secretion were evaluated in human primary and telomerase-immortalized esophageal epithelial cells. H1R, H2R, and H4R expression were increased in active EoE biopsies compared to inactive EoE and controls. H2R was the most abundantly expressed receptor, and H3R expression was negligible in all 3 cohorts. Infiltrating eosinophils expressed H1R, H2R, and H4R, which contributed to the observed increase in HR in active subjects. H1R and H2R, but not H3R or H4R, were constitutively expressed by primary and immortalized cells, and epithelial histamine stimulation induced GM-CSF, TNFα, and IL-8, but not TSLP or eotaxin-3 secretion. Epithelial priming with the TLR3 ligand poly (I:C) induced H1R and H2R expression, and enhanced histamine-induced GM-CSF, TNFα, and IL-8 secretion. These effects were primarily suppressed by H1R antagonists, but unaffected by H2R antagonism. Histamine directly activates esophageal epithelial cytokine secretion in vitro in an H1R dependent fashion. However, H1R, H2R and H4R are induced in active inflammation in EoE in vivo. While systemic antihistamine (anti-H1R) therapy may not induce clinical remission in EoE, our study suggests that further study of histamine receptor signaling in EoE is warranted and that targeting of additional histamine receptors may lead to novel treatment strategies for this important disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4344302PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0114831PLOS

Publication Analysis

Top Keywords

h1r h2r
24
histamine receptor
12
esophageal epithelial
12
h2r h4r
12
expression
9
eoe
9
histamine
8
receptor expression
8
eosinophilic esophagitis
8
esophagitis eoe
8

Similar Publications

Inflammation-driven diseases encompass a wide array of pathological conditions characterised by immune system dysregulation leading to tissue damage and dysfunction. Among the myriad of mediators involved in the regulation of inflammation, histamine has emerged as a key modulatory player. Histamine elicits its actions through four rhodopsin-like G-protein-coupled receptors (GPCRs), named chronologically in order of discovery as histamine H, H, H and H receptors (HR).

View Article and Find Full Text PDF

Dihydroergotamine Increases Histamine Brain Levels and Improves Memory in a Scopolamine-Induced Amnesia Model.

Int J Mol Sci

March 2024

Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México, Avenida 1o de Mayo s/n, Colonia Santa María las Torres, Cuautitlán Izcalli 54740, Mexico.

The beneficial effects of increasing histamine levels on memory have acquired special interest due to their applicability to psychiatric conditions that cause memory impairments. In addition, by employing drug repurposing approaches, it was demonstrated that dihydroergotamine (DHE), an FDA drug approved to treat migraines, inhibits Histamine N Methyl Transferase (HNMT), the enzyme responsible for the inactivation of histamine in the brain. For this reason, in the present work, the effect of DHE on histamine levels in the hippocampus and its effects on memory was evaluated, employing the scopolamine-induced amnesia model, the Novel Object Recognition (NOR) paradigm, and the Morris Water Maze (MWM).

View Article and Find Full Text PDF

Here we describe the cryo-electron microscopy structure of the human histamine 2 receptor (HR) in an active conformation with bound histamine and in complex with G heterotrimeric protein at an overall resolution of 3.4 Å. The complex was generated by cotranslational insertion of the receptor into preformed nanodisc membranes using cell-free synthesis in E.

View Article and Find Full Text PDF

Histamine receptor antagonists, which can bind to specific histamine receptors on target cells, exhibit substantial therapeutic efficacy in managing a variety of histamine-mediated disorders. Notably, histamine H1 and H2 receptor antagonists have been extensively investigated and universally acknowledged as recommended treatment agents for numerous allergic diseases and acid-related disorders, respectively. Historically, the combination of H1 and H2 receptor antagonists has been considered a classic treatment strategy, demonstrating relatively superior efficacy compared with single-drug therapies in the treatment of diverse histamine-mediated diseases.

View Article and Find Full Text PDF

Histamine Receptors: Ex Vivo Functional Studies Enabling the Discovery of Hits and Pathways.

Membranes (Basel)

December 2023

Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg, O&N2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium.

Histamine receptors (HRs) are G-protein-coupled receptors involved in diverse responses triggered by histamine release during inflammation or by encounters with venomous creatures. Four histamine receptors (H1R-H4R) have been cloned and extensively characterized. These receptors are distributed throughout the body and their activation is associated with clinical manifestations such as urticaria (H1R), gastric acid stimulation (H2R), regulation of neurotransmitters in neuronal diseases (H3R), and immune responses (H4R).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!