The endothelium represents not only a simple cellular monolayer that lines the vascular tree in humans and other vertebrates. Depending on the location, the endothelium shows significant morphological and functional heterogeneity through differentiated expression of pro- and anticoagulant factors, presence and frequency of intercellular contacts, variable contractility, cell shape, and volume. Altogether, these properties are crucial for adjustment of the endothelial function and further maintenance of the adequate homeostasis in response in local microenvironmental changes. Endothelial cells (ECs) play a critical role in coordinated regulation of blood flow. This is achieved due to the capacity of ECs to create the active anti-thrombotic surface that supports blood fluidity and transfer of blood cells and biomolecules. However, in certain vascular regions that can occur in inflamed sites or in sites with high hydrodynamic shear stress, ECs could lost their anti-thrombotic properties and switch their normal quiescent phenotype towards the prothrombotic, proadhesion, and proinflammatory state. In such an athero-prone site, the proper endothelial function is impaired that increases risk for formation of the atherosclerotic plaque. The endothelial dysfunction not only precedes atherosclerosis but greatly contributes to atherogenesis in all disease stages. Healthy lifestyle and regular intake of correct antioxidant-rich diet such as fresh fruits, vegetables, olive oil, red wine, and tea have beneficial effects on endothelial function and could therefore reduce the cardiovascular risk.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1389557515666150226114031DOI Listing

Publication Analysis

Top Keywords

endothelial function
16
endothelial
6
vascular endothelium
4
endothelium functioning
4
functioning norm
4
norm changes
4
changes atherosclerosis
4
atherosclerosis current
4
current dietary
4
dietary approaches
4

Similar Publications

Extracellular vesicles (EVs) emerged as critical contributors to the pathogenesis of vascular endothelial barrier dysfunction during the inflammatory response to infection. However, the contribution of circulating EVs to modifying endothelial function during dengue virus infection remains unclear. In this study, we showed that severe dengue patients' plasma-derived EV (SD-EV) were found to carry elevated levels of different protein cargos, e.

View Article and Find Full Text PDF

Whole-exome sequencing association study reveals genetic effects on tumor microenvironment components in nasopharyngeal carcinoma.

J Clin Invest

January 2025

State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center - Zhongshan School of Medicine.

Nasopharyngeal carcinoma (NPC) presents a substantial clinical challenge due to the limited understanding of its genetic underpinnings. Here we conduct the largest scale whole-exome sequencing association study of NPC to date, encompassing 6,969 NPC cases and 7,100 controls. We unveil 3 germline genetic variants linked to NPC susceptibility: a common rs2276868 in RPL14, a rare rs5361 in SELE, and a common rs1050462 in HLA-B.

View Article and Find Full Text PDF

Endothelial dysfunction, characterized by a decline in endothelial physiological functions, is a significant aspect of cardiovascular aging, contributing notably to arterial stiffness, atherosclerosis, and hypertension. Transient receptor potential channel V4 (TRPV4), a key member of Ca-permeable channels, plays a crucial role in maintaining vascular functions. However, the role and mechanisms of TRPV4 in aging-related endothelial dysfunction remain incompletely understood.

View Article and Find Full Text PDF

Neovascular age-related macular degeneration (nAMD), characterized by choroidal neovascularization (CNV), is one of the leading causes of severe visual impairment and irreversible vision loss around the world. Subretinal fibrosis (SRF) contributes to the incomplete response to anti-vascular endothelial growth factor (VEGF) treatment and is one of the main reasons for long-term poor visual outcomes in nAMD. Reducing SRF is urgently needed in the anti-VEGF era.

View Article and Find Full Text PDF

The Lim Kinase (LIMK) family of serine/threonine kinases is comprised of LIMK1 and LIMK2, which are central regulators of cytoskeletal dynamics via their well-characterized roles in promoting actin polymerization and destabilizing the cellular microtubular network. The LIMKs have been demonstrated to modulate several fundamental physiological processes, including cell cycle progression, cell motility and migration, and cell differentiation. These processes play important roles in maintaining cardiovascular health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!