Thermal lensing poses a serious challenge for the power scaling of enhancement cavities, in particular when these contain transmissive elements. We demonstrate the compensation of the lensing induced by thermal deformations of the cavity mirrors with the thermal lensing in a thin Brewster plate. Using forced convection to fine-tune the lensing in the plate, we achieve average powers of up to 160 kW for 250-MHz-repetition-rate picosecond pulses with a power-independent mode size. Furthermore, we show that the susceptibility of the cavity mode size to thermal lensing allows highly sensitive absorption measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.40.000843DOI Listing

Publication Analysis

Top Keywords

thermal lensing
12
enhancement cavities
8
cavities transmissive
8
transmissive elements
8
mode size
8
lensing
5
balancing thermal
4
thermal lenses
4
lenses enhancement
4
thermal
4

Similar Publications

Holographic light potentials generated by phase-modulating liquid-crystal spatial light modulators (SLMs) are widely used in quantum technology applications. Accurate calibration of the wavefront and intensity profile of the laser beam at the SLM display is key to the high fidelity of holographic potentials. Here, we present a new calibration technique that is faster than previous methods while maintaining the same level of accuracy.

View Article and Find Full Text PDF

Metasurfaces based on chalcogenide phase-change materials offer a highly promising route towards the realization of non-volatile reconfigurable metasurfaces. However, since their switching mechanism between amorphous and crystalline states is based on thermal stimuli, phase-change metasurfaces should be treated carefully when operating under high power laser sources, since optically induced heating could trigger unwanted state changes during their operation. In this work, therefore, we develop a thermodynamic model capable of tracking the crystallization, melting and reamorphization dynamics of phase-change optical metadevices, and so too their optical performance, when operating under (i.

View Article and Find Full Text PDF

Very high-average optical enhancement cavities (OECs) are being used both in fundamental and applied research. The most demanding applications require stable megawatt level average power of infrared picosecond pulses with repetition rates of several tens of MHz. Toward reaching this goal, we report on the achievement of 710 kW of stable average power in a two-mirror hemispherical optical enhancement cavity.

View Article and Find Full Text PDF

Ultra short pulse Ti:sapphire lasers, crucial for most demanding applications, have traditionally been complex and costly due to their pump sources. GaN-based laser diodes offer new prospects for pumping, yet challenges persist in achieving sufficient Ti:sapphire output power and beam quality. We introduce what we believe to be a novel approach using pulsed blue laser diode pumping of a Ti:sapphire amplifier.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how thermal bonding and concave end faces impact the performance of 795 nm laser diodes (LD) when used to pump Tm:YAP crystals.
  • Concave end faces help to counteract thermal lensing effects, allowing for higher power output, reaching 42.5 W with a slope efficiency of 47.4% and optical-optical conversion efficiency of 41.6%.
  • Compared to flat bonding rods, the concave design improves the maximum output power and efficiencies, demonstrating its effectiveness in enhancing heat dissipation and laser performance.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!