We present a compact, all-room-temperature continuous-wave laser source in the visible spectral region between 574 and 647 nm by frequency doubling of a broadly tunable InAs/GaAs quantum-dot external-cavity diode laser in a periodically poled potassium titanyl phosphate crystal containing three waveguides with different cross-sectional areas (4×4, 3×5, and 2 μm×6 μm). The influence of a waveguide's design on tunability, output power, and mode distribution of second-harmonic generated light, as well as possibilities to increase the conversion efficiency via an optimization of a waveguide's cross-sectional area, was systematically investigated. A maximum output power of 12.04 mW with a conversion efficiency of 10.29% at 605.6 nm was demonstrated in the wider waveguide with the cross-sectional area of 4 μm×4 μm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.40.000835 | DOI Listing |
Front Sports Act Living
January 2025
Movement, Sport, Health and Sciences Laboratory (M2S), UFR APS, University of Rennes 2-ENS Cachan, Rennes, France.
Objective: Muscle power is essential for the activities of daily living. Muscle power production depends on numerous factors such as muscle size and length, muscle architecture and fiber type and varies with age during growth. The association between muscle power output during a jump and lower limb muscle volume and length in adolescents is largely unknown.
View Article and Find Full Text PDFAdv Mater
January 2025
Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
Structural diversity of biomolecules leads to various supramolecular organizations and asymmetric architectures of self-assemblies with significant piezoelectric response. However, the piezoelectricity of biomolecular self-assemblies has not been fully explored and the relationship between supramolecular structures and piezoelectricity remains poorly understood, which hinders the development of piezoelectric biomaterials. Herein, for the first time, the piezoelectricity of vitamin-based self-assemblies for power generation is systematically explored.
View Article and Find Full Text PDFAdv Mater
January 2025
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
New types of metal-organic framework (MOF) materials have great potential in solving the current global dilemma on energy, environment, and medical care. Herein, based on two kinds of biomolecule-MOFs (Bio-MOFs) with favorable biocompatibility and degradation-reconstruction characteristics, we have established a self-powered muti-functional device to achieve an efficient and broad-spectrum environmental energy collection and biomedical applications. Combining Zn(II) and carnosine-based Zn-Car_MOF possessing a high piezoelectric response (d = 11.
View Article and Find Full Text PDFSci Rep
January 2025
School of Computer Science and Engineering (SCOPE), VIT-AP University, Amaravati, Andhra Pradesh, 522237, India.
Indian mythology is a treasure trove of divine tales, yet a gap in understanding still exists between foreign tourists and the rich cultural heritage of Indian deities. To address the problem, this paper presents a deep learning-driven mobile application named "MythicVision" designed to help foreign tourists better understand India's rich cultural heritage by recognizing and interpreting images of Indian mythological deities. At first, four state-of-the-art deep models have been trained and evaluated on a custom in-house dataset consists of 10,970 images of various Indian deities sourced from both natural scene and web images.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Electromagnetic Space, Southeast University, Nanjing, China.
Holographic multiple-input multiple-output (MIMO) method leverages spatial diversity to enhance the performance of wireless communications and is expected to be a key technology enabling for high-speed data services in the forthcoming sixth generation (6G) networks. However, the antenna array commonly used in the traditional massive MIMO cannot meet the requirements of low cost, low complexity and high spatial resolution simultaneously, especially in higher frequency bands. Hence it is important to achieve a feasible hardware platform to support theoretical study of the holographic MIMO communications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!