Background: Molecular hydrogen, given its pollution-free combustion, has great potential to replace fossil fuels in future transportation and energy production. However, current industrial hydrogen production processes, such as steam reforming of methane, contribute significantly to the greenhouse effect. Therefore alternative methods, in particular the use of fermentative microorganisms, have attracted scientific interest in recent years. However the low overall yield obtained is a major challenge in biological H2 production. Thus, a thorough and detailed understanding of the relationships between genome content, gene expression patterns, pathway utilisation and metabolite synthesis is required to optimise the yield of biohydrogen production pathways.

Results: In this study transcriptomic and proteomic analyses of the hydrogen-producing bacterium Clostridium butyricum CWBI 1009 were carried out to provide a biomolecular overview of the changes that occur when the metabolism shifts to H2 production. The growth, H2-production, and glucose-fermentation profiles were monitored in 20 L batch bioreactors under unregulated-pH and fixed-pH conditions (pH 7.3 and 5.2). Conspicuous differences were observed in the bioreactor performances and cellular metabolisms for all the tested metabolites, and they were pH dependent. During unregulated-pH glucose fermentation increased H2 production was associated with concurrent strong up-regulation of the nitrogenase coding genes. However, no such concurrent up-regulation of the [FeFe] hydrogenase genes was observed. During the fixed pH 5.2 fermentation, by contrast, the expression levels for the [FeFe] hydrogenase coding genes were higher than during the unregulated-pH fermentation, while the nitrogenase transcripts were less abundant. The overall results suggest, for the first time, that environmental factors may determine whether H2 production in C. butyricum CWBI 1009 is mediated by the hydrogenases and/or the nitrogenase.

Conclusions: This work, contributing to the field of dark fermentative hydrogen production, provides a multidisciplinary approach for the investigation of the processes involved in the molecular H2 metabolism of clostridia. In addition, it lays the groundwork for further optimisation of biohydrogen production pathways based on genetic engineering techniques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342158PMC
http://dx.doi.org/10.1186/s13068-015-0203-5DOI Listing

Publication Analysis

Top Keywords

hydrogen production
12
butyricum cwbi
12
cwbi 1009
12
production
10
clostridium butyricum
8
biohydrogen production
8
coding genes
8
[fefe] hydrogenase
8
genome-wide transcriptional
4
transcriptional analysis
4

Similar Publications

Acid triggering highly-efficient release of reactive oxygen species to block mitochondrial-mediated homeostasis maintenance for accelerating cell death.

Anal Chim Acta

February 2025

School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China; School of Chemical and Environmental Engineering, Anhui Polytechnic University, 241000, Wuhu, PR China. Electronic address:

A pivotal pathway of photodynamic therapy (PDT) is to prompt mitochondrial damage by reactive oxygen species (ROS) generation, thus leading to cancer cell apoptosis. However, mitochondrial autophagy is induced during such a PDT process, which is a protective mechanism for cancer cell homeostasis, resulting in undermined therapeutic efficacy. Herein, we report a series of meticulously designed donor (D)-π-acceptor (A) photosensitizers (PSs), characterized by the strategic modulation of thiophene π-bridges, which exhibit unparalleled mitochondrial targeting proficiency.

View Article and Find Full Text PDF

Lignin-coordinated niobium-based catalyst for the efficient conversion of industrial lignin in choline chloride-lactic acid integrated with ethanol deep eutectic solvent.

Int J Biol Macromol

January 2025

Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China. Electronic address:

Catalytic depolymerization is a favorable option for the valorization of industrial lignin. In this study, a new strategy was demonstrated for the efficient reductive depolymerization of industrial lignin based on a complex solvent of choline chloride-lactic acid (ChCl-LA) DES integrated with ethanol and a C-supported N-doped niobium-based catalyst with industrial lignin as carbon source (NBC@N-LC). It was found that the introduction of ethanol significantly improved the conversion of industrial lignin in ChCl-LA.

View Article and Find Full Text PDF

The ternary complex effectively prevents droplet aggregation, Ostwald ripening, and phase separation through its gel network, thereby demonstrating its capability in bioactive compound delivery. In this work, the influence of varying chickpea protein isolate (CPI) levels on the microstructure, gel characteristics, stability and functional properties of grape seed proanthocyanidin (GSP) and konjac gum (KGM) stabilized ternary complexes was investigated. Visual appearance indicated the formation of a non-stratified ternary complex as the CPI enhanced to 3-4 %.

View Article and Find Full Text PDF

Enzymatic hydrolysis approach is commonly employed for preparation of active peptides, while the limited purity and yield of produced peptides hinder further development of action mechanisms. This study presents the biotechnological approach for the efficient production of recombinant angiotensin converting enzyme (ACE) inhibitory peptide LYPVK and investigates its potential antihypertensive action mechanism. DNA encoding sequence of recombinant peptide was designed to form in tandem, which was expressed in Escherichia coli BL21 (DE3).

View Article and Find Full Text PDF

This study successfully synthesised and characterised composites combining chitosan (CH), carboxymethyl cellulose (CMC), and various flavonoids (Fla). This innovative approach demonstrates the potential for developing functional materials with antioxidant and food preservation properties. The composites CH-Fla-CMC (1-5) was characterised using advanced techniques such as FT-IR, UV-Vis, XRD, SEM, TEM, and TGA, providing robust data on their structural, morphological, and thermal properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!