Climate and land cover changes are important drivers of the plant species distributions and diversity patterns in mountainous regions. Although the need for a multifaceted view of diversity based on taxonomic, functional and phylogenetic dimensions is now commonly recognized, there are no complete risk assessments concerning their expected changes. In this paper, we used a range of species distribution models in an ensemble-forecasting framework together with regional climate and land cover projections by 2080 to analyze the potential threat for more than 2,500 plant species at high resolution (2.5 km × 2.5 km) in the French Alps. We also decomposed taxonomic, functional and phylogenetic diversity facets into α and β components and analyzed their expected changes by 2080. Overall, plant species threats from climate and land cover changes in the French Alps were expected to vary depending on the species' preferred altitudinal vegetation zone, rarity, and conservation status. Indeed, rare species and species of conservation concern were the ones projected to experience less severe change, and also the ones being the most efficiently preserved by the current network of protected areas. Conversely, the three facets of plant diversity were also projected to experience drastic spatial re-shuffling by 2080. In general, the mean α-diversity of the three facets was projected to increase to the detriment of regional β-diversity, although the latter was projected to remain high at the montane-alpine transition zones. Our results show that, due to a high-altitude distribution, the current protection network is efficient for rare species, and species predicted to migrate upward. Although our modeling framework may not capture all possible mechanisms of species range shifts, our work illustrates that a comprehensive risk assessment on an entire floristic region combined with functional and phylogenetic information can help delimitate future scenarios of biodiversity and better design its protection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338502 | PMC |
http://dx.doi.org/10.1111/ecog.00670 | DOI Listing |
Sci Rep
January 2025
Institute of Crop Science and Resource Conservation, University of Bonn, Katzenburgweg 5, D-53115, Bonn, Germany.
Climate change significantly challenges smallholder mixed crop-livestock (MCL) systems in sub-Saharan Africa (SSA), affecting food and feed production. This study enhances the SIMPLACE modeling framework by incorporating crop-vegetation-livestock models, which contribute to the development of sustainable agricultural practices in response to climate change. Applying such a framework in a domain in West Africa (786,500 km) allowed us to estimate the changes in crop (Maize, Millet, and Sorghum) yield, grass biomass, livestock numbers, and greenhouse gas emission in response to future climate scenarios.
View Article and Find Full Text PDFChemosphere
January 2025
Environmental Chemistry Laboratory, Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083970, Brazil. Electronic address:
Brazil's extensive agricultural area makes it the world's leading soybeans and sugarcane producer. Therefore, the use of large amounts of pesticides directly impacts all environmental compartments, including rainwater. We analyzed 14 pesticides and 5 degradation products in rainwater from three cities in the State of São Paulo, southeastern Brazil, with distinct land uses.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Farm Management (410b), Institute of Farm Management, University of Hohenheim, Schwerzstraße 44, 70599, Stuttgart, Germany.
Agriculture accounts for a large proportion of global greenhouse gas (GHG) emissions. It is therefore crucial to identify effective and efficient GHG mitigation potentials in agriculture, but also in related upstream sectors. However, previous studies in this area have rarely undertaken a cross-sectoral assessment.
View Article and Find Full Text PDFScience
January 2025
Valério D. Pillar is at the Laboratório de Ecologia Quantitativa, Departamento de Ecologia/Centro de Ecologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
Over half of Earth's land surface is covered with fire-prone vegetation, with grassy ecosystems-such as grasslands, savannas, woodlands, and shrublands-being the most extensive. In the context of the climate crisis, scientists worldwide are exploring adaptation measures to address the heightened fire risk driven by more frequent extreme climatic conditions such as droughts and heatwaves, as well as by non-native plant invasions that increased fuel loads and altered fire regimes. Although fire is intrinsic to grassy ecosystems, rising exposure to wildfire smoke harms human health and the environment.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54000, Pakistan.
Rapid urbanization in Lahore has dramatically transformed land use and land cover (LULC), significantly impacting the city's thermal environment and intensifying climate change and sustainable development challenges. This study aims to examine the changes in the urban landscape of Lahore and their impact on the Urban thermal environment between 1990 and 2020. The previous studies conducted on Lahore lack the application of Geospatial artificial intelligence (GeoAI) to quantify land use and land cover, which is successfully covered in this study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!