Identifying chemotherapy candidates with high selectivity against cancer cells is a major challenge in cancer treatment. Tumor microenvironments cause chronic endoplasmic reticulum (ER) stress and activate the unfolded protein response (UPR) as an adaptive response. Here, one novel small-molecule compound, 17#, was discovered as a potent pan-UPR inhibitor. It exhibited good selection for growth inhibition when cancer cells were cultured in 2-deoxy-D-glucose (2DG), mimicking an in vitro glucose-deprived status. Additionally, 17# alone could mildly suppress the growth of HeLa tumor xenografts, and a synergistic anti-cancer effect was observed when 17# was combined with 2DG. A mechanistic study showed that 17#-induced selective anti-cancer effects were highly dependent on UPR inhibition, and overexpressing GRP78 or XBP1s reversed the 17#-induced growth inhibition and cell cycle arrest, partially by delaying the downregulation of the cell cycle regulator cyclin B1. Furthermore, 17# improved the sensitivity of anti-cancer drugs such as doxorubicin or etoposide. Our study presents evidence that disrupting the UPR has selective therapeutic potential and may enhance drug sensitivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.canlet.2015.02.029 | DOI Listing |
Biophys J
January 2025
Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama. Electronic address:
The Hsp100 family of protein disaggregases play important roles in maintaining protein homeostasis in cells. E. coli ClpB is an Hsp100 protein that solubilizes protein aggregates.
View Article and Find Full Text PDFViruses
January 2025
Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
The betacoronavirus genus contains five of the seven human coronaviruses, making it a particularly critical area of research to prepare for future viral emergence. We utilized three human betacoronaviruses, one from each subgenus-HCoV-OC43 (embecovirus), SARS-CoV-2 (sarbecovirus), and MERS-CoV (merbecovirus)-, to study betacoronavirus interactions with the PKR-like ER kinase (PERK) pathway of the integrated stress response (ISR)/unfolded protein response (UPR). The PERK pathway becomes activated by an abundance of unfolded proteins within the endoplasmic reticulum (ER), leading to phosphorylation of eIF2α and translational attenuation.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Division of Renal Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung 433, Taiwan.
Oxidative stress, endoplasmic reticulum (ER) stress, and alterations in autophagy activity have been described as prominent factors mediating many pathological processes in chronic kidney disease (CKD). The accumulation of misfolded proteins in the ER may stimulate the unfolded protein response (UPR). The interplay between autophagy and UPR in hemodialysis (HD) patients remains unclear.
View Article and Find Full Text PDFBiomolecules
January 2025
Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya Street, Novosibirsk 630090, Russia.
In the present work, we performed calculations of the kinetic isotope effect (KIE) on H/D, N/N, O/O, and C/C isotopic substitution in the dissociation of beta-sheet polyglycine dimers of different lengths into two monomer chains. This dissociation reaction, proceeding via breaking of the interchain hydrogen bonds (H-bonds), is considered to be a model of unfolding of the secondary structure of proteins. The calculated strengthening of the interchain hydrogen bonds N-H⋯O=C due to heavy isotope substitution decreases in the row H/D >> N/N > O/O > C/C.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Pharmacology and Immunology, Medical University of South Carolina, 173 Ashley Ave., MSC509, Charleston, SC 29425, USA.
Cutaneous T-cell lymphoma (CTCL) is a rare T-cell malignancy characterized by inflamed and painful rash-like skin lesions that may affect large portions of the body's surface. Patients experience recurrent infections due to a compromised skin barrier and generalized immunodeficiency resulting from a dominant Th2 immune phenotype of CTCL cells. Given the role of the unfolded protein response (UPR) in normal and malignant T-cell development, we investigated the impact of UPR-inducing drugs on the viability, transcriptional networks, and Th2 phenotype of CTCL.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!