​Heat-shock factor 1 (​HSF1) orchestrates the heat-shock response in eukaryotes. Although this pathway has evolved to help cells adapt in the presence of challenging conditions, it is co-opted in cancer to support malignancy. However, the mechanisms that regulate ​HSF1 and thus cellular stress response are poorly understood. Here we show that the ubiquitin ligase ​FBXW7α interacts with ​HSF1 through a conserved motif phosphorylated by ​GSK3β and ​ERK1. ​FBXW7α ubiquitylates ​HSF1 and loss of ​FBXW7α results in impaired degradation of nuclear ​HSF1 and defective heat-shock response attenuation. ​FBXW7α is either mutated or transcriptionally downregulated in melanoma and ​HSF1 nuclear stabilization correlates with increased metastatic potential and disease progression. ​FBXW7α deficiency and subsequent ​HSF1 accumulation activates an invasion-supportive transcriptional program and enhances the metastatic potential of human melanoma cells. These findings identify a post-translational mechanism of regulation of the ​HSF1 transcriptional program both in the presence of exogenous stress and in cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401662PMC
http://dx.doi.org/10.1038/ncb3121DOI Listing

Publication Analysis

Top Keywords

metastatic potential
12
​hsf1
9
cellular stress
8
stress response
8
heat-shock response
8
transcriptional program
8
​fbxw7α
5
fbxw7 modulates
4
modulates cellular
4
response
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!