Before fusing with the presynaptic plasma membrane to release neurotransmitter into the synaptic cleft synaptic vesicles have to be recruited to and docked at a specialized area of the presynaptic nerve terminal, the active zone. Exocytosis of synaptic vesicles is restricted to the presynaptic active zone, which is characterized by a unique and highly interconnected set of proteins. The protein network at the active zone is integrally involved in this process and also mediates changes in release properties, for example in response to alterations in the level of neuronal network activity. In recent years the development of novel techniques has greatly advanced our understanding of the molecular identity of respective active zone components as well as of the ultrastructure of this membranous subcompartment and of the SV release machinery. Furthermore, active zones are now viewed as dynamic structures whose composition and size are correlated with synaptic efficacy. Therefore, the dynamic remodeling of the protein network at the active zone has emerged as one potential mechanism underlying acute and long-term synaptic plasticity. Here, we will discuss this recent progress and its implications for our view of the role of the AZ in synaptic function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2015.02.011 | DOI Listing |
Nutrients
January 2025
Department of Health and Nursing Sciences, Faculty of Health and Sport Sciences Széchenyi István University, H-9026 Gyor, Hungary.
Background: disordered eating (DE) and eating disorders (ED) can negatively impact athletes' health, wellbeing, and athletic performance.
Objective: this cross-sectional study aims to assess DE risk, body composition, and nutrition knowledge among elite Hungarian athletes.
Methods: DE risk was assessed using DESA-6H and EAT-26 scales, nutrition knowledge through the Abridged Nutrition for Sport Knowledge Questionnaire (A-NSKQ), and body composition with the OMRON BF511 device.
Polymers (Basel)
January 2025
N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia.
In this work, the fracture mechanism of winding carbon-fiber-reinforced plastics (CFRPs) based on epoxy matrices reinforced by polysulfone film was investigated. Two types of polymer matrices were used: epoxy oligomer (EO) cured by iso-methyltetrahydrophthalic anhydride (iso-MTHPA), and EO-modified polysulfone (PSU) with active diluent furfuryl glycidyl ether (FGE) cured by iso-MTHPA. At the winding stage, the reinforcing film was placed in the middle layer of the CFRP.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Laboratory for Testing and Materials, Department of Mechanics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 157 73 Athens, Greece.
The fracture process of heterogeneous materials is studied here in the framework of the discipline of Non-Extensive Statistical Mechanics. Acoustic emission data provided by an experimental protocol with concrete specimens, plain or fiber-reinforced, under bending are taken advantage of. This innovation of the study lies in the fact that the analysis of the acoustic activity is implemented in terms of the energy content of the acoustic signals rather than of their interevent time or their interevent distance.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia.
The ultrastructural organization of the nuclei of the tegmental region in juvenile chum salmon () was examined using transmission electron microscopy (TEM). The dorsal tegmental nuclei (DTN), the nucleus of (NFLM), and the nucleus of the oculomotor nerve (NIII) were studied. The ultrastructural examination provided detailed ultrastructural characteristics of neurons forming the tegmental nuclei and showed neuro-glial relationships in them.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1, Shida Road, Limin Economic and Technological Development Zone, Harbin 150025, China.
The accumulation of aniline in the natural environment poses a potential threat to crops, and thus, investigating the effects of aniline on plants holds practical implications for agricultural engineering and its affiliated industries. This study combined physiological, transcriptomic, and metabolomic methods to investigate the growth status and molecular-level response mechanisms of rice under stress from varying concentrations of aniline. At a concentration of 1 mg/L, aniline exhibited a slight growth-promoting effect on rice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!