Neutral tetrahedral [Cu4(Se2CNnPr2)4] (1), monocationic hydride-centered tetracapped tetrahedral [Cu8(H){Se2CNR2}6]+ (R = nPr, 2H; Et, 3H) and neutral hydride-centered tricapped tetrahedral [Cu7(H){Se2CNR2}6] (R = nPr, 4H; Et, 5H) clusters were formed. They are the first Cu(I) complexes supported by dialkyl diselenocarbamates. The as-synthesized complexes 2H and 3H, formed from a reaction mixture of Cu(I) salts, diselenocarbamates, and [BH4]− in an 8:6:1 ratio, can be further reduced to 4H and 5H, respectively, in the presence of one equiv. of [BH4]−. Replacement of [BH4]− with [BD4]− afforded the deuteride analogues [Cu8(D){Se2CNR2}6]+ (R = nPr, 2D; Et, 3D) and [Cu7(D){Se2CNR2}6] (R = nPr, 4D; Et, 5D), which confirm the presence of hydride in the corresponding (2H, 3H, 4H and 5H) compounds. These complexes were fully characterized by elemental analysis, ESI-MS, and 1H, 2H and 77Se NMR spectroscopy, and their molecular structures were unequivocally established by single crystal X-ray crystallographic analyses (1, 2H–5H). The hydride-encapsulated copper frameworks of (2H, 3H) and (4H, 5H) reveal a tetracapped tetrahedral cage of Cu8 and a tricapped tetrahedral cage of Cu7, respectively, which are enclosed within a Se12 icosahedron constituted by six dialkyl diselenocarbamate ligands. Compounds 2H and 3H display orange emission in both the solid and solution state under UV irradiation at 77 K. In addition, the thermolysis behaviors of 2H were studied to demonstrate the potential of these compounds as single-source precursors for copper selenide nanocomposites, which were analyzed by XRD, EDX, and SEM techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4dt03810j | DOI Listing |
Molecules
December 2024
CP2M-ESCPE Lyon, CNRS, University Claude Bernard Lyon 1, UMR 5128, 43 Bd du 11 Nov. 1918, CEDEX, 69616 Villeurbanne, France.
TiO:Eu nanoparticles with varying europium concentrations were successfully synthesized via a one-pot sol-gel approach using a molecular heterometallic single-source precursor (SSP) Eu-Ti. For comparison, nanomaterials with similar europium levels were also produced by impregnating europium salts onto the same TiO substrate. All the nanomaterials were thoroughly characterized using Eu elemental analysis, powder X-ray diffraction (XRD), scanning (SEM), transmission (TEM), scanning transmission electron microscopy (STEM), Brunauer-Emmett-Teller (BET) analysis, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and photoluminescence (PL).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
The rational design and synthesis of bifunctionally active and durable oxygen electrocatalysts have garnered significant attention for electrochemical energy conversion and storage. Intermetallic nanostructures are particularly promising for these applications due to their unique catalytic properties and exceptional durability. In this study, we present a fascinating synthetic approach for the direct synthesis of a bifunctional oxygen electrocatalyst based on nitrogen-doped carbon-encapsulated ordered PdFe (o-PdFe@NC) intermetallic, using a cyano-bridged bimetallic single-source precursor tailored for aqueous rechargeable zinc-air batteries (ZABs).
View Article and Find Full Text PDFNanoscale Adv
December 2024
Department of Chemical Engineering, University of Manchester Manchester M13 9PL UK
Nanocrystals are widely explored for a range of medical, imaging, sensing, and energy conversion applications. CdS nanocrystals have been reported as excellent photocatalysts, with thin film CdS also highly important in photovoltaic devices. To optimise properties of nanocrystals, control over phase, facet, and morphology are vital.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.
Semiconductor devices are constructed from stacks of materials with different electrical properties, making deposition of thin layers central in producing semiconductor chips. The shrinking of electronics has resulted in complex device architectures which require deposition into holes and recessed features. A key parameter for such deposition is the step coverage (SC), which is the ratio of the thickness of material at the bottom and at the top.
View Article and Find Full Text PDFChemistryOpen
December 2024
School of Chemistry and School of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
Dichalcogenoimidodiphosphinate complexes of zinc [Zn{(EPPr)N}], [E=Se,Se; S,Se] were synthesized through metathetical reactions from the dichalcogenoimidodiphosphinate ligands [(EE'PPrNH)] (E, E'=Se, Se; S, Se). These complexes were characterized and used as single-source precursors through Aerosol-Assisted Chemical Vapour Deposition (AACVD) for the deposition of cubic zinc selenide (ZnSe) films on glass substrates. The deposition temperature occurred at 500 and 525 °C, while the flow rates of the carrier gas was 160 and 240 standard cubic centimetre (sccm).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!