We previously reported that blood clot combined with biphasic calcium phosphate microparticles constitute a biomaterial (BRB) that can repair a bone critical defect in rat and induces subcutaneous bone formation in mice. The granulocyte colony-stimulating factor (G-CSF) is the agent most commonly used in human to enrich blood with hematopoietic stem and progenitor cells (HSPCs) as well as granulocytes (GCs). Moreover, recent data also suggest that it can mobilize mesenchymal stem cells (MSCs). Here, we asked whether the osteoinductive properties of the BRB could be further enhanced by G-CSF, either by replacing normal blood by G-CSF-mobilized blood (BRBe) or by treating the recipient animals with G-CSF. The experiments performed in C57BL/6 mice showed that G-CSF induces a marked increase of circulating HPCs and GCs, but not of MSCs. BRBe prepared with G-CSF-enriched blood induced a slight but significant decrease of subcutaneous bone formation compared to BRB prepared with normal blood. Additional injection of G-CSF to the recipient mice had no significant effect on the bone formation induced by BRB or BRBe. Altogether these results indicate that, in this model of ectopic implantation, cell mobilization induced by G-CSF has a negative effect on the osteoinductive property of this blood/BCP composite.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.35424 | DOI Listing |
Sci Rep
January 2025
PKUCare Lu'an Hospital, 046204, Shanxi, China.
Periodontitis, a common chronic inflammatory condition caused by bacteria, leads to loss of attachment, resorption of alveolar bone, and ultimately tooth loss. Therefore, reducing bacterial load and fostering alveolar bone regeneration are essential components in the treatment of periodontitis. In this study, we prepared smaller-sized Ag-Metal Organic Frameworks (Ag@MOF) and loaded with sodium alginate (Alg) hydrogel for periodontitis treatment.
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, 49000, Angers, France.
Obesity is a major public health issue worldwide. Despite various approaches to weight loss, the most effective technique for reducing obesity, as well as diabetes and associated diseases, is bariatric surgery. Increasingly, young women without children are undergoing bariatric surgery, vertical sleeve gastrectomy (VSG) being the most common procedure nowadays.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Beijing Institute of Dental Research, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.
Background: Low-intensity pulsed ultrasound (LIPUS) has been used as an effective noninvasive method for treating fractures and osteoarthrosis, but the application in the field of oral implantation is in its infancy. This study aimed to clarify the effect and mechanism of LIPUS on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and implant osseointegration, and to provide an experimental basis for future clinical applications.
Methods: Dental implants were inserted into Wistar rat femurs, and LIPUS was performed for 4 weeks.
Sci Total Environ
January 2025
Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China. Electronic address:
In the present study, we investigated the effects of a representative of the per- and polyfluoroalkyl substance (PFAS) chemical group, namely perfluorooctanoic acid (PFOA), and its alternatives (perfluorobutanoic acid [PFBA] and the hexafluoropropylene oxide dimer acid [GenX]) on bone homeostasis, a process that mainly depends on osteoblast (OB) and osteoclast (OC) activities at the cellular level. C3H10T1/2 cells and bone marrow macrophages (BMMs) were respectively induced into OBs and OCs, and treated with PFOA, PFBA, and GenX at doses of 0.25, 2.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
Interdisciplinar Laboratory of Advanced Materials, LIMAV, UFPI, Teresina, PI, Brazil.
Bacterial nanocellulose (BNC) has attracted considerable attention in the field of biomedical engineering due to its potential for use in bone regeneration applications. The present study investigates the in vitro and in vivo efficacy of bacterial nanocellulose (BNC) combined with calcium and cerium ions (BNC-Ce:CaP) in bone regeneration applications. XRD analysis confirmed the presence of monetite and hydroxyapatite phases in BNC-CaP, while BNC-Ce:CaP revealed an additional brushite phase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!