Modulation of deregulated chaperone-mediated autophagy by a phosphopeptide.

Autophagy

a CNRS; Immunopathologie et chimie thérapeutique/Laboratory of excellence Medalis ; Institut de Biologie Moléculaire et Cellulaire ; Strasbourg , France.

Published: March 2016

The P140 peptide, a 21-mer linear peptide (sequence 131-151) generated from the spliceosomal SNRNP70/U1-70K protein, contains a phosphoserine residue at position 140. It significantly ameliorates clinical manifestations in autoimmune patients with systemic lupus erythematosus and enhances survival in MRL/lpr lupus-prone mice. Previous studies showed that after P140 treatment, there is an accumulation of autophagy markers sequestosome 1/p62 and MAP1LC3-II in MRL/lpr B cells, consistent with a downregulation of autophagic flux. We now identify chaperone-mediated autophagy (CMA) as a target of P140 and demonstrate that its inhibitory effect on CMA is likely tied to its ability to alter the composition of HSPA8/HSC70 heterocomplexes. As in the case of HSPA8, expression of the limiting CMA component LAMP2A, which is increased in MRL/lpr B cells, is downregulated after P140 treatment. We also show that P140, but not the unphosphorylated peptide, uses the clathrin-dependent endo-lysosomal pathway to enter into MRL/lpr B lymphocytes and accumulates in the lysosomal lumen where it may directly hamper lysosomal HSPA8 chaperoning functions, and also destabilize LAMP2A in lysosomes as a result of its effect on HSP90AA1. This dual effect may interfere with the endogenous autoantigen processing and loading to major histocompatibility complex class II molecules and as a consequence, lead to lower activation of autoreactive T cells. These results shed light on mechanisms by which P140 can modulate lupus disease and exert its tolerogenic activity in patients. The unique selective inhibitory effect of the P140 peptide on CMA may be harnessed in other pathological conditions in which reduction of CMA activity would be desired.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4502742PMC
http://dx.doi.org/10.1080/15548627.2015.1017179DOI Listing

Publication Analysis

Top Keywords

chaperone-mediated autophagy
8
p140 peptide
8
p140 treatment
8
mrl/lpr cells
8
p140
7
cma
5
modulation deregulated
4
deregulated chaperone-mediated
4
autophagy phosphopeptide
4
phosphopeptide p140
4

Similar Publications

Glioblastoma (GB) is one of the most aggressive and treatment-resistant cancers due to its complex tumor microenvironment (TME). We previously showed that GB progression is dependent on the aberrant induction of chaperone-mediated autophagy (CMA) in pericytes (PCs), which promotes TME immunosuppression through the PC secretome. The secretion of extracellular matrix (ECM) proteins with anti-tumor (Lumican) and pro-tumoral (Osteopontin, OPN) properties was shown to be dependent on the regulation of GB-induced CMA in PCs.

View Article and Find Full Text PDF

Tracking Chaperone-Mediated Autophagy Flux with a pH-Resistant Fluorescent Reporter.

Int J Mol Sci

December 2024

Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China.

Chaperone-mediated autophagy (CMA) is a selective autophagic pathway responsible for degrading cytoplasmic proteins within lysosomes. Monitoring CMA flux is essential for understanding its functions and molecular mechanisms but remains technically complex and challenging. In this study, we developed a pH-resistant probe, KFERQ-Gamillus, by screening various green fluorescent proteins.

View Article and Find Full Text PDF

The protective role of baicalin regulation of autophagy in cancers.

Cytotechnology

February 2025

Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China.

Autophagy is a conservative process of self degradation, in which abnormal organelles, proteins and other macromolecules are encapsulated and transferred to lysosomes for subsequent degradation. It maintains the intracellular balance, and responds to cellular conditions such as hunger or stress. To date, there are mainly three types of autophagy: macroautophagy, microautophagy and chaperone-mediated autophagy.

View Article and Find Full Text PDF

Protein quality control machinery: regulators of condensate architecture and functionality.

Trends Biochem Sci

January 2025

Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; Department of Biology, Syracuse University, Syracuse, NY 13244, USA; Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA; Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244, USA. Electronic address:

Protein quality control (PQC) mechanisms including the ubiquitin (Ub)-proteasome system (UPS), autophagy, and chaperone-mediated refolding are essential to maintain protein homeostasis in cells. Recent studies show that these PQC mechanisms are further modulated by biomolecular condensates that sequester PQC components and compartmentalize reactions. Accumulating evidence points towards the PQC machinery playing a pivotal role in regulating the assembly, disassembly, and viscoelastic properties of several condensates.

View Article and Find Full Text PDF

Chaperone mediated autophagy (CMA) represents a specialized mechanism of lysosomal protein breakdown, playing a crucial role as a metabolic pathway that helps to regulate and sustain cellular and systemic physiological equilibrium. Within the CMA process, proteins that contain sequences similar to KFERQ are specifically identified by the heat shock cognate protein 70. These proteins are then chaperoned to the lysosomes for subsequent degradation, a process facilitated by the lysosome associated membrane protein 2A.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!