Chlamydiae are obligate intracellular pathogens of eukaryotes. The bacteria grow in an intracellular vesicle called an inclusion, the membrane of which is heavily modified by chlamydial proteins called Incs (Inclusion membrane proteins). Incs represent 7-10% of the genomes of Chlamydia and, given their localization at the interface between the host and the pathogen, likely play a key role in the development and pathogenesis of the bacterium. However, their functions remain largely unknown. Here, we characterized the interaction properties between various Inc proteins of C. trachomatis, using a bacterial two-hybrid (BACTH) method suitable for detecting interactions between integral membrane proteins. To validate this approach, we first examined the oligomerization properties of the well-characterized IncA protein and showed that both the cytoplasmic domain and the transmembrane region independently contribute to IncA oligomerization. We then analyzed a set of Inc proteins and identified novel interactions between these components. Two small Incs, IncF, and Ct222, were found here to interact with many other Inc proteins and may thus represent interaction nodes within the inclusion membrane. Our data suggest that the Inc proteins may assemble in the membrane of the inclusion to form specific multi-molecular complexes in an hierarchical and temporal manner. These studies will help to better define the putative functions of the Inc proteins in the infectious process of Chlamydia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4324299 | PMC |
http://dx.doi.org/10.3389/fcimb.2015.00013 | DOI Listing |
Infect Immun
January 2025
Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA.
is an obligate intracellular bacterial pathogen that develops within a membrane-bound vacuole called an inclusion. Throughout its developmental cycle, modifies the inclusion membrane (IM) with type III secreted (T3S) membrane proteins, known as inclusion membrane proteins (Incs). Via the IM, manipulates the host cell to acquire lipids and nutrients necessary for its growth.
View Article and Find Full Text PDFEgypt J Immunol
January 2025
Department of Microbiology and Infection Prevention and Control Unit, Theodor Bilharz Research Institute, Giza 12411, Egypt.
Cryptococcal meningitis is an alarming fungal infection that usually affects the meninges surrounding the brain and spinal cord. The causative organism is Cryptococcus neoformans. Although this infection can occur in normal individuals, it is more often seen in patients with human immunodeficiency virus/acquired immunodeficiency syndrome.
View Article and Find Full Text PDFJSLS
January 2025
Western New York Urology Associates, Cheektowaga, New York, USA. (Dr. Eddib).
Background: Sacrocolpopexy has become a favored treatment of pelvic organ prolapse due to its durability and efficacy. Sacrocolpopexy has not been standardized and there is no categorization scheme to facilitate communication or research efforts for the procedure. A systematic review was conducted to facilitate construction of a classification system for sacrocolpopexy based on extent of vaginal dissection described in the medical literature.
View Article and Find Full Text PDFJ Cardiothorac Surg
January 2025
Section of Cardiothoracic Surgery, Department of Heart Disease, Haukeland University Hospital, Jonas Lies vei 65, 5021, Bergen, Norway.
Background: A broncho-esophageal fistula (BEF) is a medical and surgical disaster. Treatment of BEF is often limited to palliative stent treatment that may migrate or cause erosions and tissue necrosis. Surgical repair of BEF is the only established definite treatment.
View Article and Find Full Text PDFNat Commun
January 2025
Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genova, Italy.
The lack of effective therapies for visual restoration in Retinitis pigmentosa and macular degeneration has led to the development of new strategies, such as optogenetics and retinal prostheses. However, visual restoration is poor due to the massive light-evoked activation of retinal neurons, regardless of the segregation of visual information in ON and OFF channels, which is essential for contrast sensitivity and spatial resolution. Here, we show that Ziapin2, a membrane photoswitch that modulates neuronal capacitance and excitability in a light-dependent manner, is capable of reinstating, in mouse and rat genetic models of photoreceptor degeneration, brisk and sluggish ON, OFF, and ON-OFF responses in retinal ganglion cells evoked by full-field stimuli, with reactivation of their excitatory and inhibitory conductances.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!