A surprising range of modified-methionyl S-adenosylmethionine analogues support bacterial growth.

Microbiology (Reading)

Department of Medical Microbiology and Immunology, and Program in Bioinformatics, University of Toledo Health Sciences Campus, Toledo, OH 43614, USA

Published: March 2015

S-Adenosyl-l-methionine (AdoMet) is an essential metabolite, serving in a very wide variety of metabolic reactions. The enzyme that produces AdoMet from l-methionine and ATP (methionine adenosyltransferase, MAT) is thus an attractive target for antimicrobial agents. We previously showed that a variety of methionine analogues are MAT substrates, yielding AdoMet analogues that function in specific methyltransfer reactions. However, this left open the question of whether the modified AdoMet molecules could support bacterial growth, meaning that they functioned in the full range of essential AdoMet-dependent reactions. The answer matters both for insight into the functional flexibility of key metabolic enzymes, and for drug design strategies for both MAT inhibitors and selectively toxic MAT substrates. In this study, methionine analogues were converted in vitro into AdoMet analogues, and tested with an Escherichia coli strain lacking MAT (ΔmetK) but that produces a heterologous AdoMet transporter. Growth that yields viable, morphologically normal cells provides exceptionally robust evidence that the analogue functions in every essential reaction in which AdoMet participates. Overall, the S-adenosylated derivatives of all tested l-methionine analogues modified at the carboxyl moiety, and some others as well, showed in vivo functionality sufficient to allow good growth in both rich and minimal media, with high viability and morphological normality. As the analogues were chosen based on incompatibility with the reactions via which AdoMet is used to produce acylhomoserine lactones (AHLs) for quorum sensing, these results support the possibility of using this route to selectively interfere with AHL biosynthesis without inhibiting bacterial growth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4339656PMC
http://dx.doi.org/10.1099/mic.0.000034DOI Listing

Publication Analysis

Top Keywords

bacterial growth
12
support bacterial
8
adomet
8
methionine analogues
8
mat substrates
8
adomet analogues
8
analogues
7
growth
5
mat
5
surprising range
4

Similar Publications

Study on Antibacterial Activities of and Leaf Extracts Against Some Human Pathogens.

ScientificWorldJournal

January 2025

Department of Biology, College of Science, Bahir Dar University, P. O. Box 79, Bahir Dar, Ethiopia.

The present study was aimed to verify the medicinal value of and traditionally used to treat human and animal ailments in Ethiopia. Fresh leaves of these species were collected, dried under shade, and ground into fine powder. The extraction was carried out by the maceration method using methanol as a solvent.

View Article and Find Full Text PDF

Environmental cues sometimes have a direct impact on phage particle stability, as well as bacterial physiology and metabolism, having a profound effect on phage infection outcome. Here, we explore the impact of temperature on the interplay between phage (phiIPLA-RODI) and its host, . Our results show that phiIPLA-RODI is a more effective predator at room (25 °C) compared to body temperature (37 °C) against planktonic cultures of several strains with varying degrees of phage susceptibility.

View Article and Find Full Text PDF

Urologic patients with anatomic abnormalities can be particularly susceptible to urinary tract infections (UTI). UTI with urease-producing bacteria can promote struvite urinary calculi and pose unique treatment problems. There is potential for rapid stone growth and bacterial eradication can be difficult secondary to urothelial or stone colonization.

View Article and Find Full Text PDF

Disruption of biological membranes by hydrophobic molecules: a way to inhibit bacterial growth.

Front Microbiol

January 2025

Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Monterrey, Apodaca, Nuevo León, Mexico.

With antibiotic resistance increasing in the global population every year, efforts to discover new strategies against microbial diseases are urgently needed. One of the new therapeutic targets is the bacterial cell membrane since, in the event of a drastic alteration, it can cause cell death. We propose the utilization of hydrophobic molecules, namely, propofol (PFL) and cannabidiol (CBD), dissolved in nanodroplets of oil, to effectively strike the membrane of two well-known pathogens: and .

View Article and Find Full Text PDF

Antimicrobial resistance is due to genetic changes that allow bacteria to evade antibiotic treatment. Antimicrobial susceptibility testing is critical for the detection of antibiotic-resistant strains, the selection of effective therapeutic strategies against bacterial infections, and the evaluation of the efficacy of novel antimicrobials. Among the variety of clinical microbiology methods used for antibiotic susceptibility testing, minimum inhibitory concentration (MIC) assays have become the gold standard in clinical practice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!