A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genetic mapping of natural variation in schooling tendency in the threespine stickleback. | LitMetric

Although there is a heritable basis for many animal behaviors, the genetic architecture of behavioral variation in natural populations remains mostly unknown, particularly in vertebrates. We sought to identify the genetic basis for social affiliation in two populations of threespine sticklebacks (Gasterosteus aculeatus) that differ in their propensity to school. Marine sticklebacks from Japan school strongly whereas benthic sticklebacks from a lake in Canada are more solitary. Here, we expanded on our previous efforts to identify quantitative trait loci (QTL) for differences in schooling tendency. We tested fish multiple times in two assays that test different aspects of schooling tendency: 1) the model school assay, which presents fish with a school of eight model sticklebacks; and 2) the choice assay, in which fish are given a choice between the model school and a stationary artificial plant. We found low-to-moderate levels of repeatability, ranging from 0.1 to 0.5, in schooling phenotypes. To identify the genomic regions that contribute to differences in schooling tendency, we used QTL mapping in two types of crosses: benthic × marine backcrosses and an F2 intercross. We found two QTL for time spent with the school in the model school assay, and one QTL for number of approaches to the school in the choice assay. These QTL were on three different linkage groups, not previously linked to behavioral differences in sticklebacks. Our results highlight the importance of using multiple crosses and robust behavioral assays to uncover the genetic basis of behavioral variation in natural populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4426364PMC
http://dx.doi.org/10.1534/g3.114.016519DOI Listing

Publication Analysis

Top Keywords

schooling tendency
16
model school
12
behavioral variation
8
variation natural
8
natural populations
8
genetic basis
8
school
8
differences schooling
8
school assay
8
school model
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!