N-acetylcysteine effectively diminished meconium-induced oxidative stress in adult rabbits.

J Physiol Pharmacol

Department of Physiology, Comenius University in Bratislava, Jessenius School of Medicine in Martin, Martin, Slovakia.

Published: February 2015

Since inflammation and oxidative stress are fundamental in the pathophysiology of neonatal meconium aspiration syndrome (MAS), various anti-inflammatory drugs have been used in experimental and clinical studies on MAS. This pilot study evaluated therapeutic potential of N-acetylcysteine in modulation of meconium-induced inflammation and oxidative lung injury. Oxygen-ventilated adult rabbits were intratracheally given 4 ml/kg of meconium (25 mg/ml) or saline (Sal, n = 6). Thirty minutes later, meconium-instilled animals were treated with intravenous N-acetylcysteine (10 mg/kg, Mec + NAC, n=6) or were non-treated (Mec, n = 6). All animals were oxygen-ventilated for additional 5 hours. Total and differential blood leukocyte counts were determined at baseline, and at 1, 3 and 5 h of the treatment. After sacrificing animals, left lung was saline-lavaged and total and differential cell counts in the bronchoalveolar lavage fluid were determined. Right lung was used for biochemical analyses and for estimation of wet-dry weight ratio. In lung tissue homogenate, thiobarbituric acid-reactive substances (TBARS), dityrosine, lysine-lipid peroxidation (LPO) products, and total antioxidant status (TAS) were detected. In isolated lung mitochondria, TBARS, dityrosine, lysine-LPO products, thiol group content, conjugated dienes, and activity of cytochrome c oxidase were estimated. To evaluate systemic effects of meconium instillation and NAC treatment, TBARS and TAS were determined also in plasma. To evaluate participation of eosinophils in the meconium-induced inflammation, eosinophil cationic protein (ECP) was detected in plasma and lung homogenate. Meconium instillation increased oxidation markers and ECP in the lung and decreased TAS (all P<0.05). NAC treatment reduced ECP and oxidation markers (all P<0.05, except of dityrosine in homogenate and conjugated dienes in mitochondria) and prevented a decrease in TAS (P<0.01) in lung homogenate compared to Mec group. In plasma, NAC decreased TBARS (P<0.001) and ECP, and increased TAS (both P<0.05) compared to Mec group. Concluding, N-acetylcysteine diminished meconium-induced inflammation and oxidative lung injury.

Download full-text PDF

Source

Publication Analysis

Top Keywords

oxidative stress
8
adult rabbits
8
inflammation oxidative
8
meconium-induced inflammation
8
total differential
8
tbars dityrosine
8
meconium instillation
8
lung
7
n-acetylcysteine effectively
4
effectively diminished
4

Similar Publications

Enhancing Miscanthus floridulus remediation of soil cadmium using Beauveria bassiana FE14: Plant growth promotion and microbial interactions.

Ecotoxicol Environ Saf

January 2025

College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410125, China. Electronic address:

Soil heavy metal pollution presents substantial risks to food security and human health. This study focused on the efficiency of plant growth-promoting fungus-Beauveria bassiana FE14 and Miscanthus floridulus on the synergistic remediation of soil Cd contamination. Results revealed that B.

View Article and Find Full Text PDF

Inducers of Autophagy and Cell Death: Focus on Copper Metabolism.

Ecotoxicol Environ Saf

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chendu 611130, PR China. Electronic address:

Copper is an essential trace element in biological systems, playing a key role in various physiological functions, including redox reactions and energy metabolism. However, an imbalance in copper homeostasis can induce oxidative stress, mitochondrial dysfunction, and inhibition of the ubiquitin-proteasome system, ultimately leading to significant cytotoxicity and cell death. According to recent research, copper can bind to lipoylation sites on proteins involved in the tricarboxylic acid cycle, causing aggregation of lipoylated proteins, the loss of Fe-S cluster proteins, proteotoxic stress, and ultimately, cell death.

View Article and Find Full Text PDF

This study aimed to investigate the potential protective properties of a traditional Chinese medicine (TCM) herbal product, Siraitia grosvenorii granules (SGG) against PM2.5-induced lung injury, as well as their active constituents and underlying mechanisms. The chemical composition of SGG, such as wogonin (MOL000173), luteolin (MOL000006), nobiletin (MOL005828), naringenin (MOL004328), acacetin (MOL001689), were identified via ultra-high-performance liquid chromatography-Q Exactive (UHPLC-QE) Orbitrap/MS.

View Article and Find Full Text PDF

Objective: The oxidative balance score (OBS) has emerged as a novel marker for assessing oxidative stress status. This study aimed to investigate the association of OBS with systolic blood pressure (SBP), diastolic blood pressure (DBP), all-cause, and cardiovascular disease mortality in hypertensive patients.

Methods: We conducted an analysis of data from 7602 hypertensive patients from the National Health and Nutrition Examination Survey (NHANES) 2005-2018.

View Article and Find Full Text PDF

Youthful Stem Cell Microenvironments: Rejuvenating Aged Bone Repair Through Mitochondrial Homeostasis Remodeling.

Adv Sci (Weinh)

January 2025

Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.

Extracellular matrix (ECM) derived from mesenchymal stem cells regulates antioxidant properties and bone metabolism by providing a favorable extracellular microenvironment. However, its functional role and molecular mechanism in mitochondrial function regulation and aged bone regeneration remain insufficiently elucidated. This proteomic analysis has revealed a greater abundance of proteins supporting mitochondrial function in the young ECM (Y-ECM) secreted by young bone marrow-derived mesenchymal stem cells (BMMSCs) compared to the aged ECM (A-ECM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!