Cavitation-enhanced delivery of insulin in agar and porcine models of human skin.

Phys Med Biol

Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK. Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.

Published: March 2015

Ultrasound-assisted transdermal insulin delivery offers a less painful and less invasive alternative to subcutaneous insulin injections. However, ultrasound-based drug delivery, otherwise known as sonophoresis, is a highly variable phenomenon, in part dependent on cavitation. The aim of the current work is to investigate the role of cavitation in transdermal insulin delivery. Fluorescently stained, soluble Actrapid insulin was placed on the surface of human skin-mimicking materials subjected to 265 kHz, 10% duty cycle focused ultrasound. A confocally and coaxially aligned 5 MHz broadband ultrasound transducer was used to detect cavitation. Two different skin models were used. The first model, 3% agar hydrogel, was insonated with a range of pressures (0.25-1.40 MPa peak rarefactional focal pressure-PRFP), with and without cavitation nuclei embedded within the agar at a concentration of 0.05% w/v. The second, porcine skin was insonated at 1.00 and 1.40 MPa PRFP. In both models, fluorescence measurements were used to determine penetration depth and concentration of delivered insulin. Results show that in agar gel, both insulin penetration depth and concentration only increased significantly in the presence of inertial cavitation, with up to a 40% enhancement. In porcine skin the amount of fluorescent insulin was higher in the epidermis of those samples that were exposed to ultrasound compared to the control samples, but there was no significant increase in penetration distance. The results underline the importance of instigating and monitoring inertial cavitation during transdermal insulin delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0031-9155/60/6/2421DOI Listing

Publication Analysis

Top Keywords

transdermal insulin
12
insulin delivery
12
insulin
9
insulin agar
8
cavitation transdermal
8
porcine skin
8
penetration depth
8
depth concentration
8
inertial cavitation
8
cavitation
6

Similar Publications

Thumb-sized 3D-Printed cymbal microneedle array (CyMA) for enhanced transdermal drug delivery.

Eur J Pharm Biopharm

February 2025

School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China. Electronic address:

Transdermal drug delivery presents a compelling alternative to both needle injection and oral ingestion of medication, as it enhances patient adherence and convenience through its non-invasive and painless administration method. The use of microneedles penetrates the barrier of the stratum corneum, facilitating the sustained delivery of drugs across the skin. However, their efficacy has been limited by the slow diffusion of molecules and often requires external triggers.

View Article and Find Full Text PDF

Ketone monoester ingestion improves cardiac function in adults with type 2 diabetes: a double-blind, placebo controlled, randomised, crossover trial.

J Appl Physiol (1985)

January 2025

Physical Activity, Health and Rehabilitation Thematic Research Group, School of Psychology, Sport & Health Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK.

Type 2 diabetes (T2D) is a metabolic disease associated with cardiovascular dysfunction. The myocardium preferentially uses ketones over free fatty acids as a more energy efficient substrate. The primary aim was to assess the effects of ketone monoester (K) ingestion on cardiac output index ().

View Article and Find Full Text PDF

Diabetes is a widespread metabolic illness. Mismanagement of diabetes can lead to severe complications that tremendously impact patients' quality of life. The assimilation of nanotechnology in diabetes care holds the potential to revolutionize treatment paradigms, improve patient outcomes, and reduce the economic burden associated with this pervasive disease.

View Article and Find Full Text PDF

Multiphysics modelling of the impact of skin deformation and strain on microneedle-based transdermal therapeutic delivery.

Acta Biomater

December 2024

UCD Centre for Biomedical Engineering, University College Dublin, Belfield, Dublin 4, Ireland; School of Mechanical & Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland; UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland. Electronic address:

Microneedle patches (MNs) hold enormous potential to facilitate the minimally-invasive delivery of drugs and vaccines transdermally. However, the micro-mechanics of skin deformation significantly influence the permeation of therapeutics through the skin. Previous studies often fail to appreciate the complexities in microneedle-skin mechanical interactions.

View Article and Find Full Text PDF

Phycocyanin/Hyaluronic Acid Microneedle Patches Loaded with Celastrol Nanoparticles for Synergistic Treatment of Diabetic Nephropathy.

ACS Biomater Sci Eng

January 2025

Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital, 7 Weiwu Road, Zhengzhou, Henan Province 450003, P. R. China.

Although multifunctional drug delivery systems have shown significant potential in the treatment of diabetic nephropathy (DN), developing an efficient synergistic drug delivery strategy remains a major challenge. The purpose of this paper is to develop a nanoparticle-loaded microneedle (MN) patch transdermal drug delivery system aimed at achieving blood glucose control and reactive oxygen species (ROS) scavenging for the synergistic treatment of DN. MNs are composed of hyaluronic acid and phycocyanin (PC), both exhibiting excellent biocompatibility and degradation properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!