AI Article Synopsis

  • The study explores an innovative drug delivery system using mannose-grafted chitosan nanocapsules to enhance the effectiveness of Amphotericin B (AB) against visceral leishmaniasis while minimizing toxicity.
  • The nanocapsules (MnosCNc-AB) showed excellent characteristics, including small size, efficient encapsulation, and positive charge, which resulted in superior uptake by macrophages compared to unmodified chitosan versions.
  • In vivo results revealed significant anti-leishmanial effects, highlighted by a ~90% reduction in parasitic load in the spleen, indicating the potential of MnosCNc-AB for targeted treatment of leishmaniasis.

Article Abstract

Purpose: Since, Leishmania protozoans are obligate intracellular parasites of macrophages, an immunopotentiating macrophage-specific Amphotericin B (AB) delivery system would be ideally appropriate to increase its superiority for leishmaniasis treatment and to eliminate undesirable toxicity. Herein, we report AB entrapped mannose grafted chitosan nanocapsules (MnosCNc-AB) that results in effective treatment of visceral leishmaniasis, while also enhancing L. donovani specific T-cell immune responses in infected host.

Methods: MnosCNc-AB were prepared via synthesized mannosylated chitosan deposition on interface of oil/water nanoemulsion intermediate and were characterized. J774A.1 macrophage uptake potential, antileishmanial activity and immunomodulatory profile were evaluated in hamster. Tissue localization, biodistribution and toxicity profile were also investigated.

Results: MnosCNc-AB had nanometric size (197.8 ± 8.84 nm), unimodal distribution (0.115 ± 0.04), positive zeta potential (+31.7 ± 1.03 mV) and 97.5 ± 1.13% cargo encapsulation efficiency. Superior macrophage internalization of mannosylated chitosan nanocapsules compared to unmodified chitosan nanocapsules was observed by fluorescence-based assessment, further confirmed by rapid blood clearance and, greater localization and higher accumulation in macrophage rich liver and spleen. While, MnosCNc-AB mediated cargo distribution to kidney decreased. Augmented in vitro antileishmanial activity and in vivo pro-inflammatory mediator's expression were observed with MnosCNc-AB, led to significant reduction (∼90%) in splenic parasite burden.

Conclusions: Results demonstrated that mannose ligand grafted chitosan nanocapsules could improve selective delivery of AB into macrophages via interactions with overexpressed mannose receptors thus reduce undesirable toxicity. Study provides evidence for MnosCNc-AB potential to leishmaniasis therapeutics and presents valuable therapeutic strategies for combating chronic macrophage-resident microbial infections.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11095-015-1651-0DOI Listing

Publication Analysis

Top Keywords

chitosan nanocapsules
16
mediated cargo
8
undesirable toxicity
8
grafted chitosan
8
mannosylated chitosan
8
antileishmanial activity
8
mnoscnc-ab
6
chitosan
5
overexpressed macrophage
4
mannose
4

Similar Publications

Biomaterials for Corneal Regeneration.

Adv Sci (Weinh)

December 2024

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China.

Corneal blindness is a significant reason for visual impairment globally. Researchers have been investigating several methods for corneal regeneration in order to cure these patients. Biomaterials are favored due to their biocompatibility and capacity to promote cell adhesion.

View Article and Find Full Text PDF

Introduction: Since the population of Europe is rapidly aging, the number of cases of neurodegenerative diseases sharply increases. One of the most significant limitations of current neurodegenerative disease treatment is the inefficient delivery of neuroprotective drugs to the affected part of the brain. One of the promising methods to improve the pharmacokinetic and pharmacodynamic properties of antioxidants is their encapsulation in nanocarriers.

View Article and Find Full Text PDF

Developing and creating novel antibiotics is one of the most important targets in treating infectious diseases. Novel coumarins were synthesized and characterized using different spectroscopic techniques such as Fourier Transform Infrared (FTIR), Nuclear magnetic resonanceH and C and mass spectroscopy (MS). All of the synthesized compounds have been tested for activity and sensitivity against the microbial strains of B.

View Article and Find Full Text PDF

Insulin therapy is essential for regulating blood sugar levels. Conventional subcutaneous injection is prone to psychological stress, local tissue damage and severe blood glucose fluctuations, and thus the development of oral insulin technology has become an alternative therapy. However, oral insulin faces challenges such as difficult absorption, poor adhesion, low bioavailability, and short duration of action, due to the large molecular weight, low permeability, and easily degradable by enzymes and gastric acids.

View Article and Find Full Text PDF

The aim of this research was to determine the effect of free and nanoencapsulated garlic essential oil (GEO) on performance, serum biochemistry, and immune functions. Broiler chickens (900 males 1-day-old, Ross 308) were randomly assigned to six treatment diets (0, 75, or 150 mg/kg free GEO and 0 [containing chitosan], 75, or 150 mg/kg nanoencapsulated GEO) in a 2 × 3 factorial arrangement of treatments. The inclusion of nanoencapsulated GEO with a concentration of 75 mg/kg significantly increased the growth performance (p < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!