The locations of five random mouse genomic DNA markers and five cloned genes, including the genes for clotting factors VIII and IX (Cf-8 and Cf-9), Duchenne muscular dystrophy (Dmd), phosphoglycerate kinase-1 (Pgk-1), and alpha-galactosidase (Ags), on the mouse X chromosome were determined by in situ hybridization. The five random DNA markers provide new genetic loci with useful restriction fragment length polymorphisms between mouse strains and species, including one locus close to the centromeric region of the mouse X chromosome. The physical map and the recombination map of these loci on the X chromosome were compared. There was good agreement in the order of loci. Relative distances between loci were consistent along the X chromosome, with the exception of the telomeric end of the long arm, where the recombination fraction observed between loci closely associated on the physical map was higher than that between similarly spaced markers located in the proximal region of the X chromosome. These results are discussed in comparison to the human X-chromosome map.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0888-7543(89)90044-x | DOI Listing |
Sci Rep
January 2025
MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
Bulk ATAC-seq assays have been used to map and profile the chromatin accessibility of regulatory elements such as enhancers, promoters, and insulators. This has provided great insight into the regulation of gene expression in many cell types in a variety of organisms. To date, ATAC-seq has most often been used to provide an average evaluation of chromatin accessibility in populations of cells.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA.
In mammalian oocytes, large-scale chromatin organization regulates transcription, nuclear architecture, and maintenance of chromosome stability in preparation for meiosis onset. Pre-ovulatory oocytes with distinct chromatin configurations exhibit profound differences in metabolic and transcriptional profiles that ultimately determine meiotic competence and developmental potential. Here, we developed a deep learning pipeline for the non-invasive prediction of chromatin structure and developmental potential in live mouse oocytes.
View Article and Find Full Text PDFEndocr Relat Cancer
January 2025
A Nikitski, Department of Pathology, University of Pittsburgh, Pittsburgh, 15261, United States.
Approximately 10-20% of thyroid cancers are driven by gene fusions, which activate oncogenic signaling through aberrant overexpression, ligand-independent dimerization, or loss of inhibitory motifs. We identified 13 thyroid tumors with thyroglobulin (TG) gene fusions and aimed to assess their histopathology and the fusions' oncogenic and tumorigenic properties. Of 11 cases with surgical pathology, 82% were carcinomas and 18% noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP).
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy.
Background: Bacterial toxins are emerging as promising hallmarks of colorectal cancer (CRC) pathogenesis. In particular, Cytotoxic Necrotizing Factor 1 (CNF1) from E. coli deserves special consideration due to the significantly higher prevalence of this toxin gene in CRC patients with respect to healthy subjects, and to the numerous tumor-promoting effects that have been ascribed to the toxin in vitro.
View Article and Find Full Text PDFCommun Biol
January 2025
Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014, Paris, France.
The H3K79 methyltransferase DOT1L is essential for multiple aspects of mammalian development where it has been shown to regulate gene expression. Here, by producing and integrating epigenomic and spike-in RNA-seq data, we decipher the molecular role of DOT1L during mouse spermatogenesis and show that it has opposite effects on gene expression depending on chromatin environment. On one hand, DOT1L represses autosomal genes that are devoid of H3K79me2 at their bodies and located in H3K27me3-rich/H3K27ac-poor environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!