The genetic basis of the varying ability to reduce nitrate in strains belonging to different biovars and subspecies of plague-causing microbe has been investigated and the inability to reduce nitrate observed in different intraspecies groups of Yersinia pestis has been shown to stem from mutations in different genes involved in the expression of this trait. The absence of denitrifying activity in strains of altaica and hissarica subspecies was not due to a mutation at position 613 of the periplasmic reductase napA observed in the strains of the biovar medievalis of the main subspecies, but rather was due to a mutation in the sequence encoding the nitrate-binding domain of the ABC transporter protein SsuA; a thymine insertion (+T) was detected at position 302 from the start of the ssuA gene. Five strains of biovar antiqua isolated at different times in Mongolia, China, and Africa were shown to lack the ability to reduce nitrate. A PCR test targeting two chromosomal regions containing deletions of 19 and 24 bp in size has been developed for the identification of strains of the biovar medievalis. This test can be combined with the test for the marker mutation in the napA gene for a more reliable detection of Y. pestis strains belonging to this biovar.

Download full-text PDF

Source

Publication Analysis

Top Keywords

reduce nitrate
12
strains biovar
12
yersinia pestis
8
ability reduce
8
strains belonging
8
subspecies mutation
8
biovar medievalis
8
strains
6
[genetic basis
4
basis variability
4

Similar Publications

Versatile nitrate-respiring heterotrophs are previously concealed contributors to sulfur cycle.

Nat Commun

January 2025

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.

Heterotrophic denitrifiers play crucial roles in global carbon and nitrogen cycling. However, their inability to oxidize sulfide renders them vulnerable to this toxic molecule, which inhibits the key enzymatic reaction responsible for reducing nitrous oxide (NO), thereby raising greenhouse gas emissions. Here, we applied microcosm incubations, community-isotope-corrected DNA stable-isotope probing, and metagenomics to characterize a cohort of heterotrophic denitrifiers in estuarine sediments that thrive by coupling sulfur oxidation with denitrification through chemolithoheterotrophic metabolism.

View Article and Find Full Text PDF

The use of nitrogen-fixing bacteria in agriculture is increasingly recognized as a sustainable method to boost crop yields, reduce chemical fertilizer use, and improve soil health. However, the microbial mechanisms by which inoculation with nitrogen-fixing bacteria enhance rice production remain unclear. In this study, rice seedlings were inoculated with the nitrogen-fixing bacterium R3 (Herbaspirillum) at the rhizosphere during the seedling stage in a pot experiment using paddy soil.

View Article and Find Full Text PDF

Turmeric is affected by various phytopathogens, which cause huge economic losses to farmers. In the present study, ten isolates of Pythium spp. were isolated from infected turmeric rhizomes and characterized.

View Article and Find Full Text PDF

Ultra-precise ruler for ammonia nitrogen quantification in electrochemical synthesis experiments.

Anal Methods

January 2025

Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.

The field of electrochemical ammonia synthesis has made rapid advancements, attracting a large number of scientists to contribute to this area of research. Accurate detection of ammonia is crucial in this process for evaluating the efficiency and selectivity of electrocatalysts. In this study, we systematically investigate the indophenol blue method for ammonia detection, examining the effects of key factors such as solution pH, nitrate concentration, and metal ion concentration on measurement accuracy.

View Article and Find Full Text PDF

Bioremediation of trichloroethene (TCE)-contaminated sites often leads to groundwater acidification, while nitrate-polluted sites tend to generate alkalization. TCE and nitrate often coexist at contaminated sites; however, the pH variation caused by nitrate self-alkalization and TCE self-acidification and how these processes affect nitrate reduction and reductive dichlorination, have not been studied. This study investigated the interaction between nitrate and TCE, two common groundwater co-contaminants, during bioreduction in serum bottles containing synthetic mineral salt media and microbial consortia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!