Hnf1b controls pancreas morphogenesis and the generation of Ngn3+ endocrine progenitors.

Development

CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS), Paris F-75005, France Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, Paris F-75005, France INSERM U969, Paris F-75005, France

Published: March 2015

Heterozygous mutations in the human HNF1B gene are associated with maturity-onset diabetes of the young type 5 (MODY5) and pancreas hypoplasia. In mouse, Hnf1b heterozygous mutants do not exhibit any phenotype, whereas the homozygous deletion in the entire epiblast leads to pancreas agenesis associated with abnormal gut regionalization. Here, we examine the specific role of Hnf1b during pancreas development, using constitutive and inducible conditional inactivation approaches at key developmental stages. Hnf1b early deletion leads to a reduced pool of pancreatic multipotent progenitor cells (MPCs) due to decreased proliferation and increased apoptosis. Lack of Hnf1b either during the first or the secondary transitions is associated with cystic ducts. Ductal cells exhibit aberrant polarity and decreased expression of several cystic disease genes, some of which we identified as novel Hnf1b targets. Notably, we show that Glis3, a transcription factor involved in duct morphogenesis and endocrine cell development, is downstream Hnf1b. In addition, a loss and abnormal differentiation of acinar cells are observed. Strikingly, inactivation of Hnf1b at different time points results in the absence of Ngn3(+) endocrine precursors throughout embryogenesis. We further show that Hnf1b occupies novel Ngn3 putative regulatory sequences in vivo. Thus, Hnf1b plays a crucial role in the regulatory networks that control pancreatic MPC expansion, acinar cell identity, duct morphogenesis and generation of endocrine precursors. Our results uncover an unappreciated requirement of Hnf1b in endocrine cell specification and suggest a mechanistic explanation of diabetes onset in individuals with MODY5.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352981PMC
http://dx.doi.org/10.1242/dev.110759DOI Listing

Publication Analysis

Top Keywords

hnf1b
12
morphogenesis generation
8
ngn3+ endocrine
8
duct morphogenesis
8
endocrine cell
8
endocrine precursors
8
endocrine
5
hnf1b controls
4
pancreas
4
controls pancreas
4

Similar Publications

Primitive to visceral endoderm maturation is essential for mouse epiblast survival beyond implantation.

iScience

January 2025

Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK.

The implantation of the mouse blastocyst initiates a complex sequence of tissue remodeling and cell differentiation events required for morphogenesis, during which the extraembryonic primitive endoderm transitions into the visceral endoderm. Through single-cell RNA sequencing of embryos at embryonic day 5.0, shortly after implantation, we reveal that this transition is driven by dynamic signaling activities, notably the upregulation of BMP signaling and a transient increase in Sox7 expression.

View Article and Find Full Text PDF

Analyzing the genetic architecture of hereditary forms of diabetes in different populations is a critical step toward optimizing diagnostic and preventive algorithms. This requires consideration of regional and population-specific characteristics, including the spectrum and frequency of pathogenic variants in targeted genes. As part of this study, we used a custom-designed NGS panel to screen for mutations in 28 genes associated with the pathogenesis of hereditary diabetes mellitus in 506 unrelated patients from Russia.

View Article and Find Full Text PDF

We encountered a family with hereditary renal failure, renal medullary cysts, pancreatic hypoplasia, hypomagnesemia, liver enzyme abnormalities, and diabetes mellitus (DM). We identified a novel heterozygous variant of HNF1B (NM_000458.4:c.

View Article and Find Full Text PDF

Introduction: Phenotypic heterogeneity and unpredictability of individual disease progression present enormous challenges in ultrarare renal ciliopathies. The tubular-derived glycoprotein, Dickkopf-related protein 3 (DKK3) is a promising biomarker for kidney fibrosis and prediction of kidney function decline. Here, we measured urinary DKK3 (uDKK3) levels in 195 pediatric patients with renal ciliopathy to assess its potential as a discriminative and prediction marker.

View Article and Find Full Text PDF

Integrated multi-omics analysis reveals clinical significance of hepatocyte nuclear factor-1β in tumor immune microenvironment, immunotherapy and prognostic prediction for colon adenocarcinoma.

Cancer Immunol Immunother

December 2024

Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China.

Background: Research has consistently highlighted the key role of hepatocyte nuclear factor 1β (HNF1B) in organ development and cancer, including its involvement in colon cancer via shifted-code mutations. However, the specific effects of HNF1B on cancer immunotherapy and the immune microenvironment are not fully understood. This study investigated the impact of HNF1B on colon cancer immunotherapy in depth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!