NCS1 (neuronal calcium sensor-1) is a Ca(2+)-myristoyl switch protein of the NCS protein family involved in synaptic plasticity and neurotransmission via Ca(2+)-dependent regulation of dopamine D2 receptor and associated Gprotein coupled receptor kinase (GRK)-2. Overexpression of NCS1 in synaptic terminals results in accumulation of membrane-bound protein and its redundant regulatory activity associated with neurological disorders. Here, we have demonstrated that bovine photoreceptors contain NCS1 that is capable of a partially irreversible interaction with isolated photoreceptor membranes and implicated in Ca(2+)-dependent binding and regulation of GRK1 in vitro. Using NCS1- recoverin C-terminal chimeric construct (NR), it was found that the Ca(2+)-myristoyl switch of NCS1 is affected by its C-terminal segment downstream the fourth EF-loop of the protein, which is variable within the NCS family. NR retains structural stability and sensitivity to Ca(2+), but interacts with photoreceptor membranes with lower affinity in a Ca(2+)- dependent fully reversible manner and displays altered GRK1 modulation. These data combined with fluorescent probing of surface hydrophobicity of NCS1, NR and recoverin suggest that the C-terminal segment of NCS1 regulates reuptake of myristoyl group under Ca(2+)-free conditions and participates in organization of the target-binding pocket of the protein. We point out a putative role of NCS1 in photoreceptors as a modulator of GRK activity and propose targeting of the C-terminal segment of NCS1 as an appropriate way for selective suppression of excessive membrane accumulation and aberrant activity of the protein in neurons associated with central nervous system dysfunctions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1871527314666150225143403 | DOI Listing |
RSC Med Chem
December 2024
Research Group of Organic Chemistry, Departments of Bioengineering Sciences and Chemistry, Vrije Universiteit Brussel Brussels Belgium
A peptide segment that is 10 residues long at the C-terminal (CT) region of Cx43 is known to be involved in interactions, both with the Cx43 protein itself and with other proteins, that result in hemichannel (HC) activity regulation. Previously reported mimetic peptides based on this region (, , ) have been revealed to be promising therapeutic agents in the context of cardiovascular diseases. In this work, novel approaches, such as C- and N-terminal modification and cyclization, to improve the proteolytic stability and bioavailability of the peptide are presented.
View Article and Find Full Text PDFAvian Pathol
January 2025
College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China.
In the last decade, the emergence of variant strains of avian orthoreovirus (ARV) has caused an enormous economic impact on the poultry industry across China and other countries. This study aimed to evaluate the molecular evolution of the ARV lineages detected in Chinese commercial broiler farms. Firstly, ARV isolation and identification of commercial broiler arthritis cases from different provinces in China from 2016 to 2021 were conducted.
View Article and Find Full Text PDFVertebrate vision in dim-light environments is initiated by rod photoreceptor cells that express the photopigment rhodopsin, a G-protein coupled receptor (GPCR). To ensure efficient light capture, rhodopsin is densely packed into hundreds of membrane discs that are tightly stacked within the rod-shaped outer segment compartment. Along with its role in eliciting the visual response, rhodopsin serves as both a building block necessary for proper outer segment formation as well as a trafficking guide for a few outer segment resident membrane proteins.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States.
The SARS-CoV-2 E protein conducts cations across the cell membrane to cause pathogenicity to infected cells. The high-resolution structures of the E transmembrane domain (ETM) in the closed state at neutral pH and in the open state at acidic pH have been determined. However, the ion conduction mechanism remains elusive.
View Article and Find Full Text PDFMol Biol Cell
December 2024
i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
The microtubule motor cytoplasmic dynein-1 transports and positions various organelles, but the molecular basis of this functional diversity is not fully understood. Cargo adaptors of the Hook protein family recruit dynein to early endosomes (EE) in fungi and human cells by forming the FTS-Hook-FHIP (FHF) complex. By contrast, the Hook homolog ZYG-12 recruits dynein to the nuclear envelope (NE) in the meiotic gonad and mitotic early embryo by forming a Linker of Nucleoskeleton and Cytoskeleton (LINC) complex.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!