Electrochemical oxidation of carbonate esters at the Li(x)Ni(0.5)Mn(1.5)O(4-δ)/electrolyte interface results in Ni/Mn dissolution and surface film formation, which negatively affect the electrochemical performance of Li-ion batteries. Ex situ X-ray absorption (XRF/XANES), Raman, and fluorescence spectroscopy, along with imaging of Li(x)Ni(0.5)Mn(1.5)O(4-δ) positive and graphite negative electrodes from tested Li-ion batteries, reveal the formation of a variety of Mn(II/III) and Ni(II) complexes with β-diketonate ligands. These metal complexes, which are generated upon anodic oxidation of ethyl and diethyl carbonates at Li(x)Ni(0.5)Mn(1.5)O(4-δ), form a surface film that partially dissolves in the electrolyte. The dissolved Mn(III) complexes are reduced to their Mn(II) analogues, which are incorporated into the solid electrolyte interphase surface layer at the graphite negative electrode. This work elucidates possible reaction pathways and evaluates their implications for Li(+) transport kinetics in Li-ion batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja5116698 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!