Recent data indicate that approximately 12% of children in the United States are affected by neurodevelopmental disorders, including attention deficit hyperactivity disorder, learning disorders, intellectual disabilities, and autism spectrum disorders. Accumulating evidence indicates a multifactorial etiology for these disorders, with social, physical, genetic susceptibility, nutritional factors, and chemical toxicants acting together to influence risk. Exposure to endocrine-disrupting chemicals during the early stages of life can disrupt normal patterns of development and thus alter brain function and disease susceptibility later in life. This article highlights research efforts and pinpoints approaches that could shed light on the possible associations between environmental chemicals that act on the endocrine system and compromised neurodevelopmental outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5393340 | PMC |
http://dx.doi.org/10.1210/en.2014-1734 | DOI Listing |
J Cardiothorac Surg
January 2025
Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, 257091, Shandong, People's Republic of China.
Background: Atherosclerosis (AS) is increasingly recognized as a chronic inflammatory disease that significantly compromises vascular health and acts as a major contributor to cardiovascular diseases. Advancements in lipidomics and metabolomics have unveiled the complex role of fatty acid metabolism (FAM) in both healthy and pathological states. However, the specific roles of fatty acid metabolism-related genes (FAMGs) in shaping therapeutic approaches, especially in AS, remain largely unexplored and are a subject of ongoing research.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
Background: KRAS-G12C inhibitors mark a notable advancement in targeted cancer therapies, yet identifying predictive biomarkers for treatment efficacy and resistance remains essential for optimizing clinical outcomes.
Methods: This systematic meta-analysis synthesized studies available through September 2024 across PubMed, Cochrane Library, SpringerLink, and Embase. Using CRISPR/Cas9 technology, this study generated cells with KEAP1 and STK11 knockouts, and utilized lentiviral vectors to overexpress PD-L1.
Nutr Metab (Lond)
January 2025
Shenzhen Center for Chronic Disease Control, No. 2021 Buxin Road, Luohu District, Shenzhen, 518020, China.
Background: Serum vitamin D deficiency is intricately linked to metabolic disorders, however, evidence on its association with continuous metabolic risk in children and adolescents remains insufficient. This study aims to elucidate the relationship between serum vitamin D levels and continuous metabolic risk.
Methods: The cross-sectional analysis involved 4490 participants aged 6 ~ 18, and the longitudinal investigation included 1398 individuals aged 6 ~ 12 years.
Commun Biol
January 2025
Department of Chemistry, University of Warwick, Coventry, UK.
Pectin is a major component of plant cells walls. The extent to which pectin chains crosslink with one another determines crucial properties including cell wall strength, porosity, and the ability of small, biologically significant molecules to access the cell. Despite its importance, significant gaps remain in our comprehension, at the molecular level, of how pectin cross-links influence the mechanical and physical properties of cell walls.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco. Electronic address:
This research explores the biosorption of Rhodamine B (Rd-B) and Sunset Yellow (SY) dyes using cross-linked chitosan-alginate (Ch-A) biocomposite beads, combining experimental investigations with theoretical studies to elucidate the biosorption mechanisms. The biocomposite beads were synthesized through an eco-friendly cross-linking method, and their structural properties were characterized using various characterization techniques. Complementary theoretical studies using Monte Carlo (MC) simulations and molecular dynamics (MD) calculations provided insights into the molecular interactions between the dyes and the biocomposite beads.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!