A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pyridine versus acetonitrile coordination in rhodium-N-heterocyclic carbene square-planar complexes. | LitMetric

Pyridine versus acetonitrile coordination in rhodium-N-heterocyclic carbene square-planar complexes.

Dalton Trans

Departamento de Química Inórganica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, C/Pedro Cerbuna 12, Zaragoza, 50009, Spain.

Published: March 2015

Experimental and theoretical studies on the factors that control the coordination chemistry of N-donor ligands in square-planar complexes of the type RhCl(NHC)L(1)L(2) (NHC = N-heterocyclic carbene) are presented. The dinuclear complexes [Rh(μ-Cl)(IPr)(η(2)-olefin)]2 {IPr = 1,3-bis-(2,6-diisopropylphenyl)imidazol-2-carbene} have been reacted with different combinations of ligands including pyridine, acetonitrile, 2-pyridylacetonitrile, triphenylphosphine, tricyclohexylphosphine, carbon monoxide or molecular oxygen. In addition, the reactivity of RhCl(IPr)(PPh3)2 has also been studied. Pyridine preferentially coordinates trans to the carbene ligand whereas π-acceptor ligands (olefin, CO or PPh3) are prone to bind cis to IPr and trans to chlorido, unless steric bulk hinders the coordination of the ligand (PCy3). In contrast, acetonitrile is more labile than pyridine but is able to form complexes coordinated cis-to-IPr. Molecular dioxygen also displaces the labile cyclooctene ligand in RhCl(IPr)(η(2)-coe)(py) to give a square-planar dioxygen adduct which can be transformed into a peroxo derivative by additional coordination of pyridine. Charge decomposition analysis (CDA) shows that σ-donation values are similar for coordination at cis- or trans-IPr positions, whereas efficient π-backbonding is significantly observed at cis position being the favoured coordination site for π-acceptor ligands. The Rh-IPr rotational barrier in a series of square-planar complexes has been analysed. It has been found that the main contribution is the steric hindrance of the ancillary ligand. The presence of a π-donor ligand such as chlorido slows down the dynamic process.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5dt00182jDOI Listing

Publication Analysis

Top Keywords

square-planar complexes
12
π-acceptor ligands
8
coordination
6
pyridine
5
complexes
5
ligand
5
pyridine versus
4
versus acetonitrile
4
acetonitrile coordination
4
coordination rhodium-n-heterocyclic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!