Physicochemical and immunological assessment of engineered pure protein particles with different redox states.

ACS Nano

†ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.

Published: March 2015

The development of subunit antigen delivery formulations has become an important research endeavor, especially in cases where a whole cell vaccine approach has significant biosafety issues. Particle-based systems have shown particular efficacy due to their inherent immunogenicity. In some cases, fabrication techniques can lead to changes in the redox states of encapsulated protein antigens. By employing a uniform, well-characterized, single-protein system, it is possible to elucidate how the molecular details of particle-based protein antigens affect their induced immune responses. Using mesoporous silica-templated, amide bond-stabilized ovalbumin particles, three types of particles were fabricated from native, reduced, and oxidized ovalbumin, resulting in particles with different physicochemical properties and immunogenicity. Phagocytosis, transcription factor activation, and cytokine secretion by a mouse macrophage cell line did not reveal significant differences between the three types of particles. Oxidation of the ovalbumin, however, was shown to inhibit the intracellular degradation of the particles compared with native and reduced ovalbumin particles. Slow intracellular degradation of the oxidized particles was correlated with inefficient antigen presentation and insignificant levels of T cell priming and antibody production in vivo. In contrast, particles fabricated from native and reduced ovalbumin were rapidly degraded after internalization by macrophages in vitro and resulted in significant T cell and B cell immune responses in vivo. Taken together, the current study demonstrates how the redox state of a protein antigen significantly impacts the immunogenicity of the particulate vaccine formulations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.5b00393DOI Listing

Publication Analysis

Top Keywords

ovalbumin particles
12
native reduced
12
particles
9
redox states
8
protein antigens
8
immune responses
8
three types
8
types particles
8
particles fabricated
8
fabricated native
8

Similar Publications

Antigens and adjuvants co-stabilized Pickering emulsions amplify immune responses of subunit vaccines.

J Control Release

January 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China. Electronic address:

Most subunit antigens often induce suboptimal vaccination efficacy, possibly due to their low immunogenicity and limited ability to migrate to lymph nodes (LNs). Although the emergence of nanovaccine has significantly addressed these challenges, most formulations still require specific biological or chemical modifications to the carrier or antigen for efficient antigen loading. In this study, we report a Pickering emulsion-based nanovaccine that directly utilized antigens and adjuvants as stabilizers, effectively amplifying immune responses without additional physicochemical alterations.

View Article and Find Full Text PDF

In this study, ultrasound-assisted glycated ovalbumin (G-UOVA) based on natural deep eutectic solvents (NADES) was prepared using response surface optimization. The binding affinity of (-)-gallocatechin gallate (GCG) to native OVA (NOVA), ultrasound treated OVA (UOVA), glycated OVA (GOVA), and G-UOVA followed G-UOVA > GOVA > UOVA > NOVA. The effects of various modifications and GCG binding on the secondary structure, particle size, and thermal stability of NOVA were investigated.

View Article and Find Full Text PDF

Functional modification of drugs can significantly improve their efficacy and safety, thus enabling targeted therapy. Functional modifications based on polysaccharides can alter their molecular structure, and effectively enhance their functional properties and biological activities. Herein, we designed and synthesized cationic Laminarin (CLam) modified with polyethyleneimine (PEI) and explored its application as a vaccine adjuvant.

View Article and Find Full Text PDF

Thermostable conformational transition unfavorable to the foaming stability of ovalbumin: Emphasizing structure and function relationship.

Int J Biol Macromol

December 2024

National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China. Electronic address:

Storage of shell eggs converts natural ovalbumin (N-OVA) into its more thermostable forms (S-OVA). This conversion may be associated with deterioration in the foaming properties of the stored shell egg. Thus, the foaming behavior of N-OVA and S-OVA, especially their performance at different pH conditions, was conducted.

View Article and Find Full Text PDF

Synergistic modification of ovalbumin by pH-driven and metal-phenolic networks: Development of dysphagia friendly high internal phase Pickering emulsions.

Int J Biol Macromol

December 2024

School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; Institute of Plant Virology, Ningbo University, Ningbo 315211, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing 401135, China. Electronic address:

Dysphagia is a common functional disorder that limits the variety of available foods. This study explored the coordination assembly of tannic acid (TA) with Fe to form a metal-phenolic network (MPN) and developed ovalbumin (OVA)/MPN via a pH-driven method as a novel emulsifier to stabilize high internal phase Pickering emulsions (HIPPEs). Results indicated that, following pH-driven treatment, the OVA/MPN composite particles exhibited smaller sizes, enhanced electrostatic repulsion, and improved stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!