Background: Rheumatoid arthritis comes with a 30% higher probability for cardiovascular disease than the general population. Current guidelines advocate for early and aggressive primary prevention and treatment of risk factors in high-risk populations but this excess risk is under-addressed in RA in real life. This is mainly due to difficulties met in the correct risk evaluation. This study aims to underline the differences in results of the main cardiovascular risk screening models in the real life rheumatoid arthritis population.
Methods: In a cross-sectional study, patients addressed to a tertiary care center in Romania for an biannual follow-up of rheumatoid arthritis and the ones who were considered free of any cardiovascular disease were assessed for subclinical atherosclerosis. Clinical, biological and carotidal ultrasound evaluations were performed. A number of cardiovascular disease prediction scores were performed and differences between tests were noted in regard to subclinical atherosclerosis as defined by the existence of carotid intima media thickness over 0,9 mm or carotid plaque.
Results: In a population of 29 Romanian rheumatoid arthritis patients free of cardiovascular disease, the performance of Framingham Risk Score, HeartSCORE, ARIC cardiovascular disease prediction score, Reynolds Risk Score, PROCAM risk score and Qrisk2 score were compared. All the scores under-diagnosed subclinical atherosclerosis. With an AUROC of 0,792, the SCORE model was the only one that could partially stratify patients in low, intermediate and high-risk categories. The use of the EULAR recommended modifier did not help to reclassify patients.
Conclusion: The only score that showed a statistically significant prediction capacity for subclinical atherosclerosis in a Romanian rheumatoid arthritis population was SCORE. The additional calibration or the use of imaging techniques in CVD risk prediction for the intermediate risk category might be warranted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4316145 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!