Rhizobiales (Alphaproteobacteria) are well-known beneficial partners in plant-microbe interactions. Less is known about the occurrence and function of Rhizobiales in the lichen symbiosis, although it has previously been shown that Alphaproteobacteria are the dominating group in growing lichen thalli. We have analyzed the taxonomic structure and assigned functions to Rhizobiales within a metagenomic dataset of the lung lichen Lobaria pulmonaria L. One third (32.2%) of the overall bacteria belong to the Rhizobiales, in particular to the families Methylobacteriaceae, Bradyrhizobiaceae, and Rhizobiaceae. About 20% of our metagenomic assignments could not be placed in any of the Rhizobiales lineages, which indicates a yet undescribed bacterial diversity. SEED-based functional analysis focused on Rhizobiales and revealed functions supporting the symbiosis, including auxin and vitamin production, nitrogen fixation and stress protection. We also have used a specifically developed probe to localize Rhizobiales by confocal laser scanning microscopy after fluorescence in situ hybridization (FISH-CLSM). Bacteria preferentially colonized fungal surfaces, but there is clear evidence that members of the Rhizobiales are able to intrude at varying depths into the interhyphal gelatinous matrix of the upper lichen cortical layer and that at least occasionally some bacteria also are capable to colonize the interior of the fungal hyphae. Interestingly, the gradual development of an endosymbiotic bacterial life was found for lichen- as well as for fungal- and plant-associated bacteria. The new tools to study Rhizobiales, FISH microscopy and comparative metagenomics, suggest a similar beneficial role for lichens than for plants and will help to better understand the Rhizobiales-host interaction and their biotechnological potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4322706PMC
http://dx.doi.org/10.3389/fmicb.2015.00053DOI Listing

Publication Analysis

Top Keywords

rhizobiales
10
lichen symbiosis
8
lobaria pulmonaria
8
lichen
5
rhizobiales functional
4
functional endosymbiontic
4
endosymbiontic members
4
members lichen
4
symbiosis lobaria
4
pulmonaria rhizobiales
4

Similar Publications

Antibiotic resistance genes (ARGs) rebounding during composting cooling phase is a critical bottleneck in composting technology that increased ARGs dissemination and application risk of compost products. In this study, mature compost (MR) was used as a substitute for rice husk (RH) to mitigate the rebound of ARGs and mobile genetic elements (MGEs) during the cooling phase of sewage sludge composting, and the relationship among ARGs, MGEs, bacterial community and environmental factors was investigated to explore the key factor influencing ARGs rebound. The results showed that aadD, blaCTX-M02, ermF, ermB, tetX and vanHB significantly increased 4.

View Article and Find Full Text PDF

Background/objectives: Gastric cancer (GC) incidence remains high worldwide, and the survival rate is poor. GC develops from atrophic gastritis (AG), associated with () infection, passing through intestinal metaplasia and dysplasia steps. Since eradication does not exclude GC development, further investigations are needed.

View Article and Find Full Text PDF

Rhizosphere microorganisms play an important role in the health and development of root systems. Investigating the microbial composition of the rhizosphere is central to understanding the inter-root microbial function of under various cultivation conditions. To complement the metagenomic study of the rhizosphere, here, an amplicon-based metagenomic survey of bacteria and fungi was selected as a practical approach to analyzing the abundance, diversity index, and community structure of rhizosphere bacteria and fungi, as well as to study the effects of different cultivation methods on rhizosphere microbial diversity.

View Article and Find Full Text PDF

The impact of combined heat and drought stress was investigated in and compared to individual stresses to reveal additive effects and interactions. A combination of plant metabolomics and root and rhizosphere bacterial metabarcoding were used to unravel effects at the plant holobiont level. Hierarchical cluster analysis of metabolomics signatures pointed out two main clusters, one including heat and combined heat and drought, and the second cluster that included the control and drought treatments.

View Article and Find Full Text PDF

The white poplar () is a dioecious woody plant with significant potential for the phytoremediation of soils. To realize this potential, it is necessary to utilize growth-promoting microorganisms. One potential source of such beneficial microorganisms is the rhizosphere community of wild-growing trees.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!