Cardiac adaptations from 4 weeks of intensity-controlled vigorous exercise are lost after a similar period of detraining.

Physiol Rep

Centre of Human & Aerospace Physiological Sciences and Centre for Stem Cells & Regenerative Medicine, Faculty of Medicine & Life Sciences, King's College London, London, SE1 1UL, UK Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, 88100, Italy.

Published: February 2015

Intensity-controlled (relative to VO2max) treadmill exercise training in adult rats results in the activation and ensuing differentiation of endogenous c-kit(pos) cardiac stem/progenitor cells (eCSCs) into newly formed cardiomyocytes and capillaries. Whether these training-induced adaptations persist following detraining is undetermined. Twelve male Wistar rats (~230 g) were exercised at 80-85% of their VO2max for 30 min day(-1), 4 days week(-1) for 4 weeks (TR; n = 6), followed by 4 weeks of detraining (DTR; n = 6). Twelve untrained rats acted as controls (CTRL). Exercise training significantly enhanced VO2max (11.34 mL kg(-1) min(-1)) and wet heart weight (29%) above CTRL (P < 0.05). Echocardiography revealed that exercise training increased LV mass (~32%), posterior and septal wall thickness (~15%), ejection fraction and fractional shortening (~10%) compared to CTRL (P < 0.05). Cardiomyocyte diameter (17.9 ± 0.1 μm vs. 14.9 ± 0.6 μm), newly formed (BrdU(pos)/Ki67(pos)) cardiomyocytes (7.2 ± 1.3%/1.9 ± 0.7% vs. 0.2 ± 0.1%/0.1 ± 0.1%), total cardiomyocyte number (45.6 ± 0.6 × 10(6) vs. 42.5 ± 0.4 × 10(6)), c-kit(pos) eCSC number (884 ± 112 per 10(6) cardiomyocytes vs. 482 ± 132 per 10(6) cardiomyocytes), and capillary density (4123 ± 227 per mm(2) vs. 2117 ± 118 per mm(2)) were significantly greater in the LV of trained animals (P < 0.05) than CTRL. Detraining removed the stimulus for c-kit(pos) eCSC activation (640 ± 98 per 10(6) cardiomyocytes) and resultant cardiomyocyte hyperplasia (0.4 ± 0.3% BrdU(pos)/0.2 ± 0.2% Ki67(pos) cardiomyocytes). Capillary density (3673 ± 374 per mm(2)) and total myocyte number (44.7 ± 0.5 × 10(6)) remained elevated following detraining, but cardiomyocyte hypertrophy (15.0 ± 0.4 μm) was lost, resulting in a reduction of anatomical (wall thickness ~4%; LV mass ~10% and cardiac mass ~8%, above CTRL) and functional (EF & FS ~2% above CTRL) parameters gained through exercise training. These findings demonstrate that cardiac adaptations, produced by 4 weeks of intensity-controlled exercise training are lost after a similar period of detraining.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393210PMC
http://dx.doi.org/10.14814/phy2.12302DOI Listing

Publication Analysis

Top Keywords

exercise training
20
106 cardiomyocytes
12
cardiac adaptations
8
weeks intensity-controlled
8
lost period
8
period detraining
8
newly formed
8
ctrl 005
8
wall thickness
8
c-kitpos ecsc
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!