Catechol-O-methyltransferase (COMT, EC 2.1.1.6) is an enzyme that catalyzes the methylation of catechol substrates, and while structural and functional studies of its membrane-bound isoform (MBCOMT) are still hampered by low recombinant production, Pichia pastoris has been described as an attractive host for the production of correctly folded and inserted membrane proteins. Hence, in this work, MBCOMT biosynthesis was developed using P. pastoris X33 and KM71H cells in shake flasks containing a semidefined medium with different methanol concentrations. Moreover, after P. pastoris glass beads lysis, biologically and immunologically active hMBCOMT was found mainly in the solubilized membrane fraction whose kinetic parameters were identical to its correspondent native enzyme. In addition, mixed feeds of methanol and glycerol or sorbitol were also employed, and its levels quantified using liquid chromatography coupled to refractive index detection. Overall, for the first time, two P. pastoris strains with opposite phenotypes were applied for MBCOMT biosynthesis under the control of the strongly methanol-inducible alcohol oxidase (AOX) promoter. Moreover, this eukaryotic system seems to be a promising approach to deliver MBCOMT in high quantities from fermentor cultures with a lower cost-benefit due to the cheaper cultivation media coupled with the higher titers tipically achieved in biorreactors, when compared with previously reported mammallian cell cultures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-015-1551-0 | DOI Listing |
Front Microbiol
January 2025
College of Biology Resources and Environmental Sciences, Jishou University, Jishou, China.
Kiwifruit canker, caused by pv. (PSA), has led to significant losses in the kiwifruit industry each year. Due to the drug resistance feature of PSA, biological control is currently the most promising method.
View Article and Find Full Text PDFBioorg Chem
January 2025
Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
Virology
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, China; Hubei Jiangxia Laboratory, 430200, Wuhan, China. Electronic address:
Pseudorabies virus (Pseudorabiesvirus, PRV) has caused huge economic losses to the global pig industry. In recent years, it has been reported that there are PRV mutants, but the traditional vaccine can not completely prevent or control the infection of PRV, so there is an urgent need to develop new broad-spectrum anti-disease drugs for prevention and treatment. PNGase F from bacteria can catalyze the hydrolysis of oligosaccharides linked to asparagine residues on peptides, so we speculate that PNGase F can inhibit virus infection by removing the glycosylation of virus membrane glycoproteins.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, 45019, Zapopan, Jal, Mexico.
Lipases from the basidiomycete fungus Ustilago maydis are promising but underexplored biocatalysts due to their high homology with Candida antarctica lipases. This study provides a comprehensive characterization of a recombinant CALB-like lipase from U. maydis, expressed in Pichia pastoris (rUMLB), and compares its properties with those of the well-studied recombinant lipase B from C.
View Article and Find Full Text PDFMicrob Biotechnol
January 2025
Izmir Biomedicine and Genome Center, Izmir, Turkey.
Low-cost and safe vaccines are needed to fill the vaccine inequity gap for future pandemics. Pichia pastoris is an ideal expression system for recombinant protein production due to its cost-effective and easy-to-scale-up process. Here, we developed a next-generation SARS-CoV2 Omicron BA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!