In about 50% of sporadic cases of retinoblastoma, no constitutive RB1 mutations are detected by conventional methods. However, recent research suggests that, at least in some of these cases, there is somatic mosaicism with respect to RB1 normal and mutant alleles. The increased availability of next generation sequencing improves our ability to detect the exact percentage of patients with mosaicism. Using this technology, we re-tested a series of 40 patients with sporadic retinoblastoma: 10 of them had been previously classified as constitutional heterozygotes, whereas in 30 no RB1 mutations had been found in lymphocytes. In 3 of these 30 patients, we have now identified low-level mosaic variants, varying in frequency between 8 and 24%. In 7 out of the 10 cases previously classified as heterozygous from testing blood cells, we were able to test additional tissues (ocular tissues, urine and/or oral mucosa): in three of them, next generation sequencing has revealed mosaicism. Present results thus confirm that a significant fraction (6/40; 15%) of sporadic retinoblastoma cases are due to postzygotic events and that deep sequencing is an efficient method to unambiguously distinguish mosaics. Re-testing of retinoblastoma patients through next generation sequencing can thus provide new information that may have important implications with respect to genetic counseling and family care.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4613478 | PMC |
http://dx.doi.org/10.1038/ejhg.2015.6 | DOI Listing |
Genome
January 2025
ICAR - National Bureau of Animal Genetic Resources, Karnal, Haryana, India;
India harbours a substantial population of 9.43 million dogs, showcasing diverse phenotypes and utility. Initiatives focusing on awareness, conservation and informed breeding can greatly enhance the recognition and welfare of the unique Indian canine heritage.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland.
Organic redox systems that can undergo oxidative and reductive (ambipolar) electron transfer are elusive yet attractive for applications across synthetic chemistry and energy science. Specifically, the use of ambipolar redox systems in proton-coupled electron transfer (PCET) reactions is largely unexplored but could enable "switchable" reactivity wherein the uptake and release of hydrogen atoms are controlled using a redox stimulus. Here, we describe the synthesis and characterization of an ambipolar functionalized terthiophene (TTH) bearing methyl thioether and phosphine oxide groups that exhibits switchable PCET reactivity.
View Article and Find Full Text PDFACS Synth Biol
January 2025
Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
Naturally occurring DNA inversion systems play an important role in the generation of genetic variation and adaptation in prokaryotes. Shufflon invertase (SI) from plasmid R64, recognizing asymmetric sites, has been adopted as a tool for synthetic biology. However, the availability of a single enzyme with moderate rates of recombination has hampered the more widespread use of SIs.
View Article and Find Full Text PDFJ Exp Psychol Gen
January 2025
Institute for Mind and Biology, University of Chicago.
Individual differences in working memory predict a wide range of cognitive abilities. However, little research has been done on whether working memory continues to predict task performance after repetitive learning. Here, we tested whether working memory ability continued to predict long-term memory (LTM) performance for picture sequences even after participants showed massive learning.
View Article and Find Full Text PDFPLoS One
January 2025
Departamento de Bioquímica y Medicina Molecular, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.
Introduction: The methicillin-resistant Staphylococcus aureus (MRSA) genome varies by geographical location. This study aims to determine the genomic characteristics of MRSA using whole-genome sequencing (WGS) data from medical centers in Mexico and to explore the associations between antimicrobial resistance genes and virulence factors.
Methods: This study included 27 clinical isolates collected from sterile sites at eight centers in Mexico in 2022 and 2023.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!