Background: Gastric cancer (GC) is one of the most common human cancers. Genes expressed only in cancer tissue, especially on the cell membrane, will be useful biomarkers for cancer diagnosis and therapeutics.
Methods: To identify novel genes encoding transmembrane protein specifically expressed in GC, we generated an Escherichia coli ampicillin secretion trap (CAST) library from diffuse-type GC cell line MKN-45. CAST is a survival-based signal sequence trap method that exploits the ability of mammalian signal sequences to confer ampicillin resistance to a mutant β-lactamase lacking the endogenous signal sequence.
Results: By sequencing 1,536 colonies, we identified 23 genes encoding the transmembrane protein present in GC. Among these genes, TSPAN8 (also known as CO-029 and TM4SF3) gene, which encodes transmembrane protein tetraspanin 8, was emphasized as a candidate. Immunohistochemical analysis of tetraspanin 8 in human GC tissues revealed that 72 (34 %) of 210 GC cases were positive for tetraspanin 8, and microvessel density was significantly higher in tetraspanin 8-positive GC than in tetraspanin 8-negative GC. Furthermore, univariate and multivariate analyses revealed that tetraspanin 8 expression is an independent prognostic classifier of patients with GC. TSPAN8 knockdown by siRNA reduced the invasion of GC cell line. The reduction of invasiveness was retrieved by the tetraspanin 8-containing exosome.
Conclusion: These results suggest that tetraspanin 8 is involved in tumor progression and is an independent prognostic classifier in patients with GC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10120-015-0478-z | DOI Listing |
Anim Cells Syst (Seoul)
January 2025
Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Korea.
Interferon gamma (IFNγ) is well-known for its ability to stimulate immune cells in response to pathogen infections and cancer. To develop an effective cancer therapeutic vaccine, CT26 colon carcinoma cells were genetically modified to express IFNγ either as a secreted form (sIFNγ) or as a membrane-bound form. For the membrane-bound expression, IFNγ was fused with Fas (mbIFNγ/Fas), incorporating the extracellular cysteine-rich domains, transmembrane, and cytoplasmic domains of Fas.
View Article and Find Full Text PDFGerms
September 2024
PhD, School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam, and Research Center for Infectious Diseases, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam.
Introduction: The emergence of colistin resistance threatens the treatment of infections.
Methods: In this study, in vitro development of colistin resistance was investigated using comparative phenotypic and proteomic analysis of ATCC 9027, its 14-day colistin sub-MIC exposed strain (Col-E1), and 10-day antibiotic-free cultured Col-E1 strain (Col-E2). Antibiotic susceptibility, morphology, virulence factors, and proteomic changes were assessed using disc-diffusion, agar-based, spectrophotometry, SEM, and iTRAQ-LC-MS/MS methods.
Oncol Lett
March 2025
Department of Hematology, Shengli Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China.
The FAT atypical cadherin 1 (FAT1) gene is the ortholog of the fat gene and encodes the protocadherin FAT1. FAT1 belongs to the cadherin superfamily, a group of full-length membrane proteins that contain cadherin-like repeats. In various types of human cancer, FAT1 is one of the most commonly mutated genes, and is considered to be an emerging cancer biomarker and a potential target for novel therapies.
View Article and Find Full Text PDFJ Otol
October 2024
The Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
Objective: This study aims to explore the expression patterns of cysteine string protein alpha (CSPα) and cysteine string protein beta (CSPβ) in the mammalian inner ear, with an emphasis on their temporal dynamics during the developmental stages of C57BL/6 mice.
Methods: We utilized immunofluorescence staining to assess the localization and distribution of CSPα and CSPβ within the inner ears of C57BL/6 mice and miniature pigs. Additionally, this method facilitated the investigation of their temporal expression profiles.
Compr Rev Food Sci Food Saf
January 2025
Laboratory of Membrane Processes (LABSEM), Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil.
Macauba is an underexplored palm with significant potential for food-grade vegetable oil production. Its fruits yield two distinct sources of oil, the pulp and the kernel, each with its unique composition, emerging as a potential vegetable oil source with high competitiveness with well-established conventional oil sources. Besides the oil, macauba fruits are rich in essential nutrients, including proteins, minerals, vitamins, dietary fiber, and phytochemicals, with outstanding health benefits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!