Fatty acid-releasing activities in Sinorhizobium meliloti include unusual diacylglycerol lipase.

Environ Microbiol

Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Apdo. Postal 565-A, Cuernavaca, Morelos, CP 62210, Mexico.

Published: September 2015

Phospholipids are well known for their membrane-forming properties and thereby delimit any cell from the exterior world. In addition, membrane phospholipids can act as precursors for signals and other biomolecules during their turnover. Little is known about phospholipid signalling, turnover and remodelling in bacteria. Recently, we showed that a FadD-deficient mutant of Sinorhizobium meliloti, unable to convert free fatty acids to their coenzyme A derivatives, accumulates free fatty acids during the stationary phase of growth. Enzymatic activities responsible for the generation of these free fatty acids were unknown in rhizobia. Searching the genome of S. meliloti, we identified a potential lysophospholipase (SMc04041) and two predicted patatin-like phospholipases A (SMc00930, SMc01003). Although SMc00930 as well as SMc01003 contribute to the release of free fatty acids in S. meliloti, neither one can use phospholipids as substrates. Here we show that SMc01003 converts diacylglycerol to monoacylglycerol and a fatty acid, and that monoacylglycerol can be further degraded by SMc01003 to another fatty acid and glycerol. A SMc01003-deficient mutant of S. meliloti transiently accumulates diacylglycerol, suggesting that SMc01003 also acts as diacylglycerol lipase (DglA) in its native background. Expression of the DglA lipase in Escherichia coli causes lysis of cells in stationary phase of growth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4914366PMC
http://dx.doi.org/10.1111/1462-2920.12814DOI Listing

Publication Analysis

Top Keywords

free fatty
16
fatty acids
16
sinorhizobium meliloti
8
diacylglycerol lipase
8
stationary phase
8
phase growth
8
fatty acid
8
fatty
7
smc01003
5
fatty acid-releasing
4

Similar Publications

Modulating the aroma and taste profile of soybean using novel strains for fermentation.

Curr Res Food Sci

December 2024

Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, Singapore, 117543, Singapore.

A key factor influencing consumer acceptance of soybean products is the aroma and taste profile, which can be modulated through fermentation using unique microbial strains. This study aimed to identify and characterize novel microbial strains with the potential to enhance flavour profiles including umami, while reducing undesirable flavour notes such as beany aromas. The results showed an 800% (8-fold) increase in free amino acids in samples fermented with , which correlated with an increase in umami intensity as measured using an E-tongue.

View Article and Find Full Text PDF

The changes of intestinal flora and metabolites in atopic dermatitis mice.

Front Microbiol

December 2024

Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, China.

Introduction: Atopic dermatitis (AD) is an allergic disease caused by various factors that can affect an individual's appearance and cause psychological stress. Therefore, it is necessary to investigate the underlying mechanisms and develop effective treatment strategies. The gut microbiota and bacterial metabolism play crucial roles in human diseases.

View Article and Find Full Text PDF

Research on enhancing the production of lipids, particularly polyunsaturated fatty acids that are considered important for health, has focused on improvement of metabolism as well as heterologous expression of biosynthetic genes in the oleaginous fungus . To date, the productivity and production yield of free fatty acids have been enhanced by 10-fold to 90-fold via improvements in metabolism and optimization of culture conditions. Moreover, the productivity of ester-type fatty acids present in triacylglycerols could be enhanced via metabolic improvement.

View Article and Find Full Text PDF

Arachis hypogaea monoacylglycerol lipase AhMAGL3b participates in lipid metabolism.

BMC Plant Biol

December 2024

College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, China.

Background: Monoacylglycerol lipase (MAGL) belongs to the serine hydrolase family; it catalyzes MAG to produce glycerol and free fatty acids (FFAs), which is the final step in triacylglycerol (TAG) hydrolysis. The effects of MAGL on comprehensive lipid metabolism and plant growth and development have not been elucidated, especially in Arachis hypogaea, an important oil crop.

Results: Herein, AhMAGL3b encoding a protein with both hydrolase and acyltransferase regions, a member of MAGL gene family, was cloned and overexpressed in Arabidopsis thaliana.

View Article and Find Full Text PDF

Bioavailability of EPA and DHA in humans - A comprehensive review.

Prog Lipid Res

December 2024

Institute of Food Science and Human Nutrition, Foundation Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany; The Fatty Acid Research Institute, 5009 W. 12th St. Ste 5, Sioux Falls, SD 57106, United States. Electronic address:

The bioavailability of long-chain omega-3 fatty acids is a critical yet often overlooked factor influencing their efficacy. This review evaluates the bioavailability of EPA/DHA from acute (single-dose) and chronic human studies, focusing on (a) chemical forms such as triacylglycerols (TAG, natural and re-esterified, rTAG), free fatty acids (FFA), and phospholipids (PL) from sources like fish, krill, and microalgae, and (b) delivery methods like microencapsulation and emulsification. Bioavailability for isolated chemically forms followed the order: FFA > PL > rTAG > unmodified TAG > ethyl esters (EE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!