In previous work using the Saccharomyces cerevisiae model system, a mutant version of histone H3-H3-L61W-was found to confer a variety of abnormal growth phenotypes and defects in specific aspects of the transcription process, including a pronounced alteration in the distribution pattern of the transcription elongation factor Spt16 across transcribed genes and promotion of cryptic transcription initiation within the FLO8 gene. To gain insights into the contribution of the H3-L61 residue to chromatin function, we have generated yeast strains expressing versions of histone H3 harboring all possible natural amino acid substitutions at position 61 (H3-L61X mutants) and tested them in a series of assays. We found that whereas 16 of the 19 H3-L61X mutants support viability when expressed as the sole source of histone H3 in cells, all 19 confer abnormal phenotypes ranging from very mild to severe, a finding that might in part explain the high degree of conservation of the H3-L61 residue among eukaryotes. An examination of the strength of the defects conferred by each H3-L61X mutant and the nature of the corresponding substituted residue provides insights into structural features of the nucleosome required for proper Spt16-gene interactions and for prevention of cryptic transcription initiation events. Finally, we provide evidence that the defects imparted by H3-L61X mutants on Spt16-gene interactions and on repression of intragenic transcription initiation are mechanistically related to each other.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4426362PMC
http://dx.doi.org/10.1534/g3.115.017376DOI Listing

Publication Analysis

Top Keywords

transcription initiation
12
h3-l61x mutants
12
cryptic transcription
8
h3-l61 residue
8
spt16-gene interactions
8
transcription
5
systematic mutational
4
mutational analysis
4
histone
4
analysis histone
4

Similar Publications

Detection of Protein-Nucleic Acid Interaction by Electrophoretic Mobility Shift Assay.

Methods Mol Biol

January 2025

Department of Pharmacology, Yale School of Medicine, Yale University, New Haven, CT, USA.

Electrophoretic Mobility Shift Assay (EMSA) is a powerful technique for studying nucleic acid and protein interactions. This technique is based on the principle that nucleic acid-protein complex and nucleic acid migrate at different rates due to differences in size and charge. Nucleic acid and protein interactions are fundamental to various biological processes, such as gene regulation, replication, transcription, and recombination.

View Article and Find Full Text PDF

Cellular prion protein (PRNP) has been implicated in various physiological processes in different cell types, for decades. Little has been known how PRNP functions in multiple, yet related processes within a particular system. In our current study, with the aid of high-throughput RNA-sequencing technique, we have presented an overall transcriptome profile of rat vascular smooth muscle cells (VSMCs) with Prnp knockdown.

View Article and Find Full Text PDF

Evidence increasingly indicates that HPV infection plays a pivotal role in the initiation and progression of bladder cancer (BC). Yet, determining the predictive value of HPV-associated genes in BC remains challenging. We identified differentially expressed HPV-associated genes of BC patients from the TCGA and GEO databases.

View Article and Find Full Text PDF

The protein corona effect refers to the phenomenon wherein nanomaterials in the bloodstream are coated by serum proteins, yet how protein coronated nanomaterials interact with blood vessels and its toxicity implications remain poorly understood. In this study, we investigated protein corona-related vessel toxicity by using an all-humanized assay integrating blood vessel organoids and patient-derived serum. Initially, we screened various nanomaterials to discern how parameters including size, morphology, hydrophobicity, surface charge, and chirality-dependent protein corona difference influence their uptake by vessel organoids.

View Article and Find Full Text PDF

Introduction: 5-Aminolevulinic acid (ALA) is an essential biosynthetic precursor of tetrapyrrole compounds, naturally occurring in all living organisms. It has also been suggested as a new plant growth regulator. Treatment with ALA promotes strawberry Na homeostasis under salt stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!