In this work, a σ-hole interaction is predicted theoretically in XH3Si···HMY complexes, where X=H, F, CN; M=Be, Mg and Y=H, F, CH3. The properties of this interaction, termed "tetrel-hydride" interaction, are investigated in terms of geometric, interaction energies, and electronic features of the complexes. The geometry of these complexes is obtained using the second-order Møller-Plesset perturbation theory (MP2) with aug-cc-pVTZ basis set. For each XH3Si···HMY complex, a tetrel-hydride bond is formed between the negatively charged H atom of HMY molecule and the positively charged Si atom of XH3Si molecule. The CCSD(T)/aug-cc-pVTZ interaction energies of this type of σ-hole bonding range from -0.6 to -3.8 kcal mol(-1). The stability of XH3Si···HMY complexes is attributed mainly to electrostatic and correlation effects. The nature of tetrel-hydride interaction is analyzed with atoms in molecules (AIM) and natural bond orbital (NBO) theories.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-015-2614-4DOI Listing

Publication Analysis

Top Keywords

σ-hole bonding
8
x=h m=be
8
m=be y=h
8
y=h ch3
8
"tetrel-hydride" interaction
8
xh3si···hmy complexes
8
interaction energies
8
charged atom
8
interaction
7
complexes
5

Similar Publications

Methyleugenol (ME) has been classified as a "group 2B carcinogen" by IARC. Its positional isomer methylisoeugenol (MIE) has been considered to be of "generally recognized as safe'' status by FDA. ME was more cytotoxic than MIE in cultured mouse primary hepatocytes.

View Article and Find Full Text PDF

Probing Surface Reactions on Multicomponent Glass Using Reflection-Absorption Infrared Spectroscopy.

Langmuir

January 2025

Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States.

The chemical reactivity of glass surfaces is often studied with elemental analysis techniques, and although such characterization methods provide insights on compositional changes from exposure to specific chemical conditions, molecule-specific chemical reactions are not determined unambiguously. This study demonstrates the use of reflection-absorption infrared spectroscopy (RAIRS) to detect molecular species on alkali-free boroaluminosilicate and alkali aluminosilicate glasses, using acetic acid vapor as a model reactant to probe reaction sites at the surface with or without pretreatment by aqueous solutions of varied pH. With the assistance of the theoretical calculation of spectral changes based on refractive indices of bulk materials, it was possible to identify the molecular species being removed and produced at the glass surface.

View Article and Find Full Text PDF

Cellulose Elementary Fibrils as Deagglomerated Binder for High-Mass-Loading Lithium Battery Electrodes.

Nanomicro Lett

January 2025

Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.

Amidst the ever-growing interest in high-mass-loading Li battery electrodes, a persistent challenge has been the insufficient continuity of their ion/electron conduction pathways. Here, we propose cellulose elementary fibrils (CEFs) as a class of deagglomerated binder for high-mass-loading electrodes. Derived from natural wood, CEF represents the most fundamental unit of cellulose with nanoscale diameter.

View Article and Find Full Text PDF

Photoinitiated Thiol-Ene Click Reaction for Preparation of Highly Adhesive and Mechanically Stable Silicone Coatings for Marine Antifouling and Anticorrosion.

ACS Appl Mater Interfaces

January 2025

Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.

Marine biofouling and corrosion have become the main problems affecting the development of the marine industry. Silicone-based coatings have been widely used for antifouling and anticorrosion due to their low surface energy. However, the poor adhesion and low mechanical stability of these materials limit their application in complex marine environments.

View Article and Find Full Text PDF

Structural and theoretical studies of amantadinium fenamates.

Acta Crystallogr B Struct Sci Cryst Eng Mater

February 2025

Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, Wrocław, 50-556, Poland.

Two new crystals of amantadinium salts were obtained from fenamic and tolfenamic acid. The salt of fenamic acid is a model compound for interaction analysis, while amantadinium tolfenamate is a composition of a drug used in the treatment of symptoms of Parkinsonism and as a nonsteroidal anti-inflammatory drug. The crystal structures were studied and a theoretical analysis of the hydrogen bonds and weak interactions was carried out using quantum theory of atoms in molecules (QTAIM) and non-covalent interaction (NCI) methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!