The interfacial energy-level alignment of a silicon nanowires (SiNWs)/PEDOT:PSS heterojunction is investigated using Kelvin probe force microscopy. The potential difference and electrical distribution in the junction are systematically revealed. When the PEDOT:PSS layer is covered at the bottom of the SiNW array, an abrupt junction is formed at the interface whose characteristics are mainly determined by the uniformly doped Si bulk. When the PEDOT:PSS layer is covered on the top, a hyperabrupt junction localized at the top of the SiNWs forms, and this characteristic depends on the surface properties of the SiNWs. Because the calculation shows that the absorption of light from the SiNWs and the Si bulk are equally important, the bottom-coverage structure leads to better position matching between the depletion and absorption area and therefore shows better photovoltaic performance. The dependence of JSC and VOC on the junction characteristic is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am508879bDOI Listing

Publication Analysis

Top Keywords

pedotpss layer
8
layer covered
8
characteristics silicon
4
silicon nanowires/pedotpss
4
nanowires/pedotpss heterojunction
4
heterojunction solar
4
solar cell
4
cell performance
4
performance interfacial
4
interfacial energy-level
4

Similar Publications

This study involved the preparation of an all-solid-state ion-selective electrode (ASS-ISE) with copper and a poly(3,4-ethylenedioxythiophene) and polystyrene sulfonate (PEDOT/PSS) conversion layer through electrode deposition. The morphology of the PEDOT/PSS film was characterized, and the performance of the copper ion-selective film was optimized. Additionally, a microfluidic chip for the ASS-ISE with copper was designed and prepared.

View Article and Find Full Text PDF

Phosphotungstate-Based Anode Interfacial Material for Constructing High-Performance Polymer Solar Cells with a Fill Factor over 80.

ACS Appl Mater Interfaces

February 2023

Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou510640, P. R. China.

In the field of organic solar cells (OSCs), the interfacial layer plays the role of enhancing carrier extraction/transportation, inhibiting their recombination, etc. In contrast to the wide variety of cathode interfacial materials with good modification ability, much less effort has been reported for anode interfacial materials. In this study, we report a polyoxometalate-based inorganic molecular cluster, zinc phosphotungstate (ZnPWO, denoted ZnPW), as an anode interfacial layer.

View Article and Find Full Text PDF

The trilayer composite was fabricated by combining functional layers of fumed SiO, thiol-ene, and poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT-PSS). Optical, scratch-healing, non-wetting, and electrical stability was investigated at different instances of time after thermal and solar irradiance treatment. The trilayer composite was found to be optically stable and highly transparent for visible light after thermal and irradiance treatment for 25 h.

View Article and Find Full Text PDF

All-solid-state potentiometric sensors have attracted great attention over other types of potentiometric sensors due to their outstanding properties such as enhanced portability, simplicity of handling, affordability and flexibility. Herein, a novel solid-contact ion-selective electrode (SC-ISE) based on poly(3,4-ethylenedioxythiophene) (PEDOT) as the ion-to-electron transducer was designed and characterized for rapid detection of harmine. The harmine-sensing membrane was based on the use of synthesized imprinted bio-mimics as a selective material for this recognition.

View Article and Find Full Text PDF

High Frequency Oscillations (HFOs, 200-600 Hz) are recognized as a biomarker of epileptogenic brain areas. This work aims at designing novel microelectrodes in order to optimize the recording and further detection of HFOs in brain (intracerebral electroencephalography, iEEG). The quality of the recorded iEEG signals is highly dependent on the electrode contact impedance, which is determined by the characteristics of the recording electrode (geometry, position, material).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!