Effects of sevelamer carbonate on advanced glycation end products and antioxidant/pro-oxidant status in patients with diabetic kidney disease.

Clin J Am Soc Nephrol

Division of Experimental Diabetes and Aging, Department of Geriatrics, Divisions of Icahn School of Medicine at Mount Sinai, New York, New York; and Nephrology, Department of Medicine, and Mount Sinai Health System, New York, New York

Published: May 2015

Background And Objectives: The primary goals were to re-examine whether sevelamer carbonate (SC) reduces advanced glycation end products (AGEs) (methylglyoxal and carboxymethyllysine [CML]), increases antioxidant defenses, reduces pro-oxidants, and improves hemoglobin A1c (HbA1c) in patients with type 2 diabetes mellitus (T2DM) and diabetic kidney disease (DKD). Secondary goals examined albuminuria, age, race, sex, and metformin prescription.

Design, Setting, Participants, & Measurements: This two-center, randomized, intention-to-treat, open-label study evaluated 117 patients with T2DM (HbA1c >6.5%) and stages 2-4 DKD (urinary albumin/creatinine ratio ≥200 mg/g) treated with SC (1600 mg) or calcium carbonate (1200 mg), three times a day, without changing medications or diet. Statistical analyses used linear mixed models adjusted for randomization levels. Preselected subgroup analyses of sex, race, age, and metformin were conducted.

Results: SC lowered serum methylglyoxal (95% confidence interval [CI], -0.72 to -0.29; P<0.001), serum CML (95% CI, -5.08 to -1.35; P≤0.001), and intracellular CML (95% CI, -1.63 to -0.28; P=0.01). SC increased anti-inflammatory defenses, including nuclear factor like-2 (95% CI, 0.58 to 1.29; P=0.001), AGE receptor 1 (95% CI, 0.23 to 0.96; P=0.001), NAD-dependent deacetylase sirtuin-1 (95% CI, 0.20 to 0.86; P=0.002), and estrogen receptor α (95% CI, 1.38 to 2.73; P ≤0.001). SC also decreased proinflammatory factors such as TNF receptor 1 (95% CI, -1.56 to -0.72; P≤0.001) and the receptor for AGEs (95% CI, -0.58 to 1.53; P≤0.001). There were no differences in HbA1c, GFR, or albuminuria in the overall group. Subanalyses showed that SC lowered HbA1c in women (95% CI, -1.71 to -0.27; P=0.01, interaction P=0.002), and reduced albuminuria in those aged <65 years (95% CI, -1.15 to -0.07; P=0.03, interaction P=0.02) and non-Caucasians (95% CI, -1.11 to -0.22; P=0.003, interaction P≤0.001), whereas albuminuria increased after SC and calcium carbonate in Caucasians.

Conclusions: SC reduced circulating and cellular AGEs, increased antioxidants, and decreased pro-oxidants, but did not change HbA1c or the albumin/creatinine ratio overall in patients with T2DM and DKD. Because subanalyses revealed that SC may reduce HbA1c and albuminuria in some patients with T2DM with DKD, further studies may be warranted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4422240PMC
http://dx.doi.org/10.2215/CJN.07750814DOI Listing

Publication Analysis

Top Keywords

sevelamer carbonate
8
advanced glycation
8
glycation products
8
diabetic kidney
8
kidney disease
8
effects sevelamer
4
carbonate advanced
4
products antioxidant/pro-oxidant
4
antioxidant/pro-oxidant status
4
status patients
4

Similar Publications

Background: The serum calcification propensity test (or T50 test) might become a standard tool for the assessment of vascular calcification risk and T50 might be a valuable biomarker in clinical trials of treatments intended to slow the progression of vascular calcification. Literature data suggest that non-calcium-containing phosphate binders can influence T50 in chronic dialysed patients. However, it is not clear whether similar interventions are effective in patients at earlier stages of chronic kidney disease (CKD).

View Article and Find Full Text PDF

Background: Chronic kidney disease (CKD) is a major global health problem. Hyperphosphatemia is frequent in CKD and a reason for increased morbidity and mortality as it generates hyperparathyroidism, high fibroblast growth factor 23 (FGF23), and hypocalcemia. Available hyperphosphatemia therapies still have limitations, including risk of metal overload, cardiovascular calcification, and systemic adverse effects (AEs).

View Article and Find Full Text PDF

Introduction: Hyperphosphatemia in advanced CKD often accompanies high PTH and FGF23 levels, impaired bone mineralization, ectopic calcifications, and increased cardiovascular risks. Novel treatments are now available to lower serum phosphorus effectively. However, safety, tolerability, and patient adherence must be evaluated to determine the best therapeutic option for hyperphosphatemia.

View Article and Find Full Text PDF

End-stage renal disease (ESRD) patients have an increased incidence of hypothyroidism, and those with serum thyroid stimulating hormone (TSH) levels above the reference range have excess mortality, increased cardiovascular disease, impaired health-related quality of life, and altered body composition. We report a patient with ESRD on chronic hemodialysis and Hashimoto's disease, who is on chronic levothyroxine therapy. Despite a high levothyroxine dose of 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!