Integration of non-fuel coproducts into the GREET model.

Environ Sci Technol

‡Life Cycle Associates, LLC., Unit A11, 884 Portola Road, Portola Valley, California 94028, United States.

Published: April 2015

The life-cycle greenhouse gas (GHG) emissions of alternative fuels that are capable of replacing conventional, petroleum-derived gasoline and diesel continue to be scrutinized for policy implementation. These alternative fuel technologies can also produce a number of value-adding nonfuel coproducts that require thorough and rigorous assessment in order to achieve an accurate life-cycle GHG emissions value. By using the gas to liquids (GTL) diesel pathway as a proxy for other alternative fuel pathways with coproducts, this paper examines how integration of coproduct analysis using the substitution method is possible within the existing framework and functionality of the GREET model. Using this approach, a GREET-compatible external tool was developed to calculate the life-cycle inventory of GTL coproducts to determine the life-cycle GHG emissions of GTL diesel using the substitution method. In addition to having built-in regional scenarios, this tool allows the user the flexibility to configure a given GTL product slate and to calculate the life-cycle GHG emissions of GTL diesel based on a given product composition. Using this protocol, the life-cycle GHG emissions of GTL diesel can range from 71.7 to 95.7 gCO2e/MJ on a well to wheel basis, with the range in carbon intensity being dependent on the mix of coproducts. These results highlight a weakly understood relationship between fuel and chemical products in LCA models. The coproduct integration approach described herein could potentially be incorporated into fuel LCA models, such as GREET, to allow users to further understand the potential environmental benefits of alternative fuel pathways, such as GTL.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es505994wDOI Listing

Publication Analysis

Top Keywords

ghg emissions
20
life-cycle ghg
16
gtl diesel
16
alternative fuel
12
emissions gtl
12
greet model
8
fuel pathways
8
substitution method
8
calculate life-cycle
8
lca models
8

Similar Publications

Biomass, as a source of lignocellulose, can be valorized into carbon micro/nanofibers for adsorbing greenhouse gas (GHGs) emissions, especially CO. This article is derived from systematic evidence evaluation of published studies, presenting new, innovative, and systemic approaches to lignocellulose-based carbon micro/nanofiber studies. The review covers a general overview of carbon micro/nanofiber studies, mapping chronicles of the studies, carbon micro/nanofiber types for CO uptake, carbon micro/nanofibers fabrication and characterization, obtained carbonaceous material activation and performances, regulatory frameworks, and sustainability.

View Article and Find Full Text PDF

Agroforestry systems are known to enhance soil health and climate resilience, but their impact on greenhouse gas (GHG) emissions in rubber-based agroforestry systems across diverse configurations is not fully understood. Here, six representative rubber-based agroforestry systems (encompassing rubber trees intercropped with arboreal, shrub, and herbaceous species) were selected based on a preliminary investigation, including Hevea brasiliensis intercropping with Alpinia oxyphylla (AOM), Alpinia katsumadai (AKH), Coffea arabica (CAA), Theobroma cacao (TCA), Cinnamomum cassia (CCA), and Pandanus amaryllifolius (PAR), and a rubber monoculture as control (RM). Soil physicochemical properties, enzyme activities, and GHG emission characteristics were determined at 0-20 cm soil depth.

View Article and Find Full Text PDF

Waste and Greenhouse Gas Emissions Produced from Ophthalmic Surgeries: A Scoping Review.

Int J Environ Res Public Health

December 2024

Department of Ophthalmology & Visual Sciences, Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY 10461, USA.

(1) Background: Healthcare is a major contributor to global greenhouse gas (GHG) emissions, especially within the surgical suite. Ophthalmologists play a role, since they frequently perform high-volume procedures, such as cataract surgery. This review aims to summarize the current literature on surgical waste and GHG emissions in ophthalmology and proposes a framework to standardize future studies.

View Article and Find Full Text PDF

Ascertaining the Environmental Advantages of Pavement Designs Incorporating Recycled Content through a Parametric and Probabilistic Approach.

Environ Sci Technol

January 2025

College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, 300350 Tianjin, China.

Reclaimed asphalt pavement (RAP) is a widely used end-of-life (EoL) material in asphalt pavements to increase the material circularity. However, the performance loss due to using RAP in the asphalt binder layer often requires a thicker layer, leading to additional material usage, energy consumption, and transportation effort. In this study, we developed a parametric and probabilistic life cycle assessment (LCA) framework to robustly compare various pavement designs incorporating recycled materials.

View Article and Find Full Text PDF

The co-gasification of biomass and plastic waste offers a promising solution for producing hydrogen-rich syngas, addressing the rising demand for cleaner energy. However, optimizing this complex process to maximize hydrogen yield remains challenging, particularly when balancing diverse feedstocks and improving process efficiency. While machine learning (ML) has shown significant potential in simulating and optimizing such processes, there is no clear consensus on the most effective regression models for co-gasification, especially with limited experimental data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!