The core Caryophyllales consist of approximately 30 families (12,000 species) distributed worldwide. Many members evolved one-seeded or conjoined fruits, but their origin and structural diversity have not been investigated. A comparative anatomical investigation of the one-seeded fruits within the core Caryophyllales was conducted. The origin of the one-seeded fruits and the evolutionary reconstructions of some carpological characters were traced using a tree based on rbcl and matK data in order to understand the ancestral characters and their changes. The one-seeded fruit type is inferred to be an ancestral character state in core Caryophyllales, with a subsequent increase in the seed number seen in all major clades. Most representatives of the 'Earlier Diverging' clade are distinguished in various carpological traits. The organization of the pericarp is diverse in many groups, although fruits with a dry, many-layered pericarp, consisting of sclerenchyma as outer layers and a thin-walled parenchyma below, with seeds occupying a vertical embryo position, are likely ancestral character states in the core Caryophyllales clade. Several carpological peculiarities in fruit and seed structure were discovered in obligate one-seeded Achatocarpaceae, Chenopodiaceae, Nyctaginaceae, Seguieriaceae and Sarcobataceae. The horizontal embryo evolved in only certain groups of Chenopodiaceae. The bar-thickening of endotegmen cells appears to be an additional character typical of core Caryophyllales. The syncarpy-to-lysicarpy paradigm in Caryophyllaceae needs to be reinterpreted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4339201PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0117974PLOS

Publication Analysis

Top Keywords

core caryophyllales
24
one-seeded fruits
12
fruits core
8
origin structural
8
structural diversity
8
ancestral character
8
one-seeded
6
core
6
caryophyllales
6
caryophyllales origin
4

Similar Publications

Background: Quinoa, as a new food crop, has attracted extensive attention at home and abroad. However, the natural disaster of spike germination seriously threatens the quality and yield of quinoa. Currently, there are limited reports on the molecular mechanisms associated with spike germination in quinoa.

View Article and Find Full Text PDF
Article Synopsis
  • Aspterric acid (AA) is a new natural herbicide that disrupts plant metabolism by targeting dihydroxyacid dehydratase.
  • The study identified key gene clusters and enzymes to maximize AA production in yeast, achieving a top production level of 33.21 mg/L.
  • AA demonstrated significant herbicidal effects, significantly hindering weed germination and suppressing both root and shoot growth, especially targeting root development, suggesting it could be an effective preemergence herbicide.
View Article and Find Full Text PDF

With the advent of advanced sequencing technologies, new insights into the genomes of pathogens, including those in the genus Curtobacterium, have emerged. This research investigates a newly isolated C. flaccumfaciens strain 208 (Cf208) from Arthrocereus glaziovii, and endemic plant from Iron Quadrangle.

View Article and Find Full Text PDF

Chemical and Biological Characterization of Metabolites from Using Mass Spectrometric and Cell-Based Assays.

Biomolecules

October 2024

Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland.

Article Synopsis
  • A detailed metabolite profiling of a medicinal plant using UHPLC-ESI-MS/MS was performed for the first time, identifying 71 compounds, mostly flavonoids, triterpene glycosides, and ecdysteroids.
  • The compounds schaftoside, 26-hydroxyecdysone, and silviridoside were highlighted as important markers for evaluating preparation quality.
  • The methanol extract demonstrated cytotoxic and Wnt pathway-inhibiting effects against triple-negative breast cancer, identifying 2-Deoxy-20-hydroxyecdysone as potent, while the presence of a hydroxyl group at C-2 in ecdysteroids was linked to reduced cytotoxicity against cancer cells.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!