Smoke inhalation injury repaired by a bone marrow-derived mesenchymal stem cell paracrine mechanism: Angiogenesis involving the Notch signaling pathway.

J Trauma Acute Care Surg

From the Burns Institute of PLA (F.Z., J.W., X.Q., J.L., Z.X.), Changhai Hospital, Second Military Medical University, Shanghai; and Department of Critical Care Medicine (F.Z.), First Affiliated Hospital of Nanchang University, Nanchang, China.

Published: March 2015

Background: Smoke inhalation injury is an acute lung injury induced by smoke exposure characterized by vascular endothelial injury and increased permeability. Cell therapy is an attractive new therapeutic approach, although its underlying mechanism and signaling pathway remain poorly understood. We investigated the effect of systemic transplantation of preconditioned bone marrow-derived mesenchymal stem cells (BMSCs) on angiogenesis in rat model of smoke inhalation injury and explored the underlying mechanism and possible signaling pathway.

Methods: After the establishment of a smoke inhalation injury rat model, the animals were further randomized into subgroups that received either a tail vein injection of 2 × 10(6) preconditioned or nonpreconditioned BMSCs in 5-mL phosphate-buffered saline to explore the characteristics of preconditioned BMSCs, pulmonary microvessel quantities in smoke inhalation injury, and its Notch1 expression.

Results: BMSCs preconditioned by 60Co γ-ray radiation at an appropriate dose were inhibited differentiation potential in vitro without significantly affecting the paracrine activity, the ability of cell proliferation, viability, and homing. Systemic preconditioned BMSC transplantation significantly increased the quantities of microvessels in rat with smoke inhalation injury, improved the lung wet-dry weight ratio, and alleviated lung injury simply through paracrine activity. Immunofluorescence staining and Western blot analysis confirmed that the expression level of Notch microvessel and Notch1 protein increased significantly after systemic transplantation.

Conclusion: Our findings indicate that systemic transplantation of preconditioned BMSCs promotes angiogenesis through paracrine activity after smoke inhalation injury and that the Notch signaling pathway is involved in the angiogenesis process.

Download full-text PDF

Source
http://dx.doi.org/10.1097/TA.0000000000000547DOI Listing

Publication Analysis

Top Keywords

smoke inhalation
28
inhalation injury
28
signaling pathway
12
paracrine activity
12
injury
10
smoke
8
bone marrow-derived
8
marrow-derived mesenchymal
8
mesenchymal stem
8
notch signaling
8

Similar Publications

A 76-year-old man with a past occupational history as a firefighter and construction worker presented at an urgent care center with signs and symptoms of chronic dry cough, exertional dyspnea, and fatigue. His initial chest X-ray showed interstitial thickening in the middle and lower lobes with pulmonary infiltrates bilaterally. The patient was treated with an outpatient course of antibiotics.

View Article and Find Full Text PDF

Background: Advances in imaging technology have enhanced the detection of pulmonary nodules. However, determining malignancy often requires invasive procedures or repeated radiation exposure, underscoring the need for safer, noninvasive diagnostic alternatives. Analyzing exhaled volatile organic compounds (VOCs) shows promise, yet its effectiveness in assessing the malignancy of pulmonary nodules remains underexplored.

View Article and Find Full Text PDF

Polychlorinated biphenyls (PCBs) from common cooking fuels in Nigeria.

J Occup Environ Hyg

January 2025

Environmental Engineering Research Laboratory, Department of Chemical Engineering, University of Ilorin, Ilorin, Nigeria.

Cooking fuels are sources of polychlorinated biphenyls (PCBs), which are persistent in the environment and have detrimental effects on human health. Fifteen PCBs congeners from the smoke of eight (8) commonly used cooking fuels in Nigeria were investigated in this study. Glass fiber filters were used to collect air emissions during the combustion of cooking fuels in a controlled chamber.

View Article and Find Full Text PDF

The Mechanisms of Cadmium Toxicity in Living Organisms.

Toxics

November 2024

UPIZ Educational and Research Laboratory of Biology-MF-NBU, New Bulgarian University, 1618 Sofia, Bulgaria.

Cadmium (Cd) is a toxic metal primarily found as a by-product of zinc production. Cd was a proven carcinogen, and exposure to this metal has been linked to various adverse health effects, which were first reported in the mid-19th century and thoroughly investigated by the 20th century. The toxicokinetics and dynamics of Cd reveal its propensity for long biological retention and predominant storage in soft tissues.

View Article and Find Full Text PDF

Background: Chronic obstructive pulmonary disease (COPD) primarily originates from exposure to tobacco smoke, although factors, such as air pollution and exposure to chemicals, also play a role. One of the primary treatments for COPD is oxygen therapy, which helps manage dyspnea and improve survival rates. Mobile health (mHealth) technologies have demonstrated significant potential in monitoring patients with chronic diseases, offering new avenues for enhancing patient care and disease management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!