Investigation of molybdenum cofactor deficiency due to MOCS2 deficiency in a newborn baby.

Meta Gene

Department of Paediatrics, Campbelltown Hospital, Campbelltown, NSW, Australia ; Department of Paediatrics, School of Medicine, University of Western Sydney, Campbelltown, NSW, Australia.

Published: February 2015

AI Article Synopsis

  • Molybdenum cofactor deficiency (MOCD) is a serious genetic condition that can cause severe neurological issues in newborns, often leading to death or significant brain damage. Symptoms can be confusingly similar to those caused by lack of oxygen during birth.
  • In a case study, a newborn girl experienced severe seizures and other neurological symptoms but tragically passed away within a week; various tests revealed specific gene mutations linked to MOCD.
  • Genetic testing confirmed the diagnosis and allowed for genetic counseling, indicating that future pregnancies could be affected; the identified mutations indicated that certain treatments were not viable for MOCD in this family.

Article Abstract

Background: Molybdenum cofactor deficiency (MOCD) is a severe autosomal recessive neonatal metabolic disease that causes seizures and death or severe brain damage. Symptoms, signs and cerebral images can resemble those attributed to intrapartum hypoxia. In humans, molybdenum cofactor (MOCO) has been found to participate in four metabolic reactions: aldehyde dehydrogenase (or oxidase), xanthine oxidoreductase (or oxidase) and sulfite oxidase, and some of the components of molybdenum cofactor synthesis participate in amidoxime reductase. A newborn girl developed refractory seizures, opisthotonus, exaggerated startle reflexes and vomiting on the second day of life. Treatment included intravenous fluid, glucose supplementation, empiric antibiotic therapy and anticonvulsant medication. Her encephalopathy progressed, and she was given palliative care and died aged 1 week. There were no dysmorphic features, including ectopia lentis but ultrasonography revealed a thin corpus callosum.

Objectives: The aim of this study is to provide etiology, prognosis and genetic counseling.

Methods: Biochemical analysis of urine, blood, Sanger sequencing of leukocyte DNA, and analysis of the effect of the mutation on protein expression.

Results: Uric acid level was low in blood, and S-sulfo-L-cysteine and xanthine were elevated in urine. Compound Z was detected in urine. Two MOCS2 gene mutations were identified: c.501 + 2delT, which disrupts a conserved splice site sequence, and c.419C > T (pS140F). Protein expression studies confirmed that the p.S140F substitution was pathogenic. The parents were shown to be heterozygous carriers.

Conclusions: Mutation analysis confirmed that the MOCD in this family could not be treated with cPMP infusion, and enabled prenatal diagnosis and termination of a subsequent affected pregnancy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4329827PMC
http://dx.doi.org/10.1016/j.mgene.2014.12.003DOI Listing

Publication Analysis

Top Keywords

molybdenum cofactor
16
cofactor deficiency
8
investigation molybdenum
4
cofactor
4
deficiency mocs2
4
mocs2 deficiency
4
deficiency newborn
4
newborn baby
4
baby background
4
background molybdenum
4

Similar Publications

Purification and Electron Transfer from Soluble c-Type Cytochrome TorC to TorA for Trimethylamine N-Oxide Reduction.

Int J Mol Sci

December 2024

Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476 Potsdam, Germany.

The enterobacterium present in the human gut can reduce trimethylamine N-oxide (TMAO) to trimethylamine during anaerobic respiration. The TMAO reductase TorA is a monomeric, bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor-containing enzyme that belongs to the dimethyl sulfoxide reductase family of molybdoenzymes. TorA is anchored to the membrane via TorC, a pentahemic -type cytochrome which receives the electrons from the menaquinol pool.

View Article and Find Full Text PDF

Nitrogenase is the enzyme primarily responsible for reducing atmospheric nitrogen to ammonia. There are three general forms of nitrogenase based on the metal ion present in the cofactor binding site, namely, molybdenum-dependent nitrogenases with the iron-molybdenum cofactor (FeMoco), the vanadium-dependent nitrogenases with FeVco, and the iron-only nitrogenases. It has been shown that the vanadium-dependent nitrogenases tend to have a lesser efficacy in reducing dinitrogen but a higher efficacy in binding and reducing carbon monoxide.

View Article and Find Full Text PDF

Increased ROS levels, antioxidant defense disturbances and bioenergetic disruption induced by thiosulfate administration in the brain of neonatal rats.

Metab Brain Dis

December 2024

Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, 90035-003, RS, Brazil.

Sulfite oxidase deficiencies, either caused by deficiency of the apoenzyme or the molybdenum cofactor, and ethylmalonic encephalopathy are inherited disorders that impact sulfur metabolism. These patients present with severe neurodeterioration accompanied by cerebral cortex and cerebellum abnormalities, and high thiosulfate levels in plasma and tissues, including the brain. We aimed to clarify the mechanisms of such abnormalities, so we assessed the ex vivo effects of thiosulfate administration on energetic status and oxidative stress markers in cortical and cerebellar tissues of newborn rats.

View Article and Find Full Text PDF

Background: Molybdenum cofactor deficiency (MoCD) is a rare metabolic disorder caused by pathogenic variants in the highly conserved biosynthetic pathway of molybdenum cofactor (MoCo), resulting in sulfite intoxication. MoCD may present in a clinically severe, fatal form marked by intractable seizures after birth, hyperekplexia, microcephaly and cerebral atrophy, or a later onset form with a more varied clinical course. Three types of MoCD have been described based on the effected gene along the MoCo synthesis pathway: type A (MOCS1); type B (MOCS2 or MOCS3) and type C (GPHN).

View Article and Find Full Text PDF

Purpose: Molybdenum cofactor deficiency (MoCD) classically presents shortly after birth, with neurological symptoms ascribed to postnatal toxicity of accumulating sulphite. Case reports suggest that cerebral damage associated with MoCD may have a prenatal onset.

Methods: A meta-analysis of case reports was performed on individuals with genetically proven MoCD retrieved through a systematic review and in-house search.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!