Background: Arrays of passive receivers are a widely used tool for tracking the movements of acoustically-tagged fish in marine ecosystems; however, the spatial and temporal heterogeneity of coral reef environments pose challenges for the interpretation of tag detection data. To improve this situation for reef fishes, we introduced a novel response variable method that treats signal detections as proportions (i.e., percent transmissions detected or "detection rates") and compared this against prior approaches to examine the influence of array and transmitter performance, signal distance and environmental factors on detection rates. We applied this method to tagged snappers and groupers in the Florida reef ecosystem and controlled range-tests on static targets in Bayboro Harbor, Florida, to provide methodological guidance for the planning and evaluation of passive array studies for coral reef fishes.
Results: Logistic regression analysis indicated detection rates were primarily a non-linear function of tag distance from receiver. A 'model-weighted' function was developed to incorporate the non-linear relationship between detection rate and distance to provide robust positioning estimates and allow for easy extension to tags with different ping rates.
Conclusions: Optimal acoustic array design requires balancing the interplay between receiver spacing, detection rates, and positioning error. Spacing receivers at twice the distance of the modeled 50% detection rate may be appropriate when quantification of overall space use is a priority, and would provide a minimum of 75% detection rate. However, for research where missing detections within the array is unacceptable or time-at-arrival based fine-scale positioning is needed, tighter receiver spacing may be required to maintain signal detection probability near 100%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4337750 | PMC |
http://dx.doi.org/10.1186/2051-3933-1-7 | DOI Listing |
Biodivers Data J
December 2024
Universidad Nacional Autonoma de Mexico, Mexico, Mexico Universidad Nacional Autonoma de Mexico Mexico Mexico.
Background: The coastal habitats in the southern Gulf of Mexico face multiple threats, such as rising water temperatures, acidification, increased turbidity, invasive species and pollutants. This imperils the biodiversity of beaches, wetlands and coral reefs. To address this, there is a need for comprehensive baseline information on marine biodiversity.
View Article and Find Full Text PDFMath Biosci
December 2024
Disease Modeling Lab (DiMoLab), Department of Mathematics and Statistics, San Diego State University, San Diego, 92182, CA, USA; Computational Science Research Center, San Diego State University, San Diego, 92182, CA, USA; Viral Information Institute, San Diego State University, San Diego, 92182, CA, USA. Electronic address:
Black band disease (BBD) is one of the most prevalent diseases causing significant destruction of coral reefs. Coral reefs acquire this deadly disease from bacteria in the microbiome community, the composition of which is highly affected by the environmental temperature. While previous studies have provided valuable insights into various aspects of BBD, the temperature-dependent microbiome composition has not been considered in existing BBD models.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
Global Reef, Koh Tao, Thailand.
The current study investigated the morphological dietary preferences of an outbreaking population of corallivorous crown-of-thorn sea stars (Acanthaster sp.) in Koh Tao, situated in the Gulf of Thailand. The local effects of such populations deemed to be in outbreak are currently poorly understood.
View Article and Find Full Text PDFMol Ecol
December 2024
Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA.
Coral populations across the Great Barrier Reef (GBR) could rapidly adapt to the warming climate if they have standing genetic variation for thermal tolerance. Here, we describe a locus likely involved in latitudinal adaptation of Acropora millepora. This locus shows a steep latitudinal gradient of derived allele frequency increasing at higher latitudes, and harbours a cluster of eight tandemly repeated Δ9-desaturase genes adjacent to a region in the genome where a hard selective sweep likely occurred.
View Article and Find Full Text PDFBMC Microbiol
December 2024
School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, China.
Background: Different species of sea cucumbers in various regions have diverse preferred habitats and feeding habits. However, detailed research on the correlation between food selection and habitat preference of sea cucumbers, as well as their adaptive adjustments to specific habitat types, is still lacking.
Methods: A field study was carried out to explore the relationship between food selection and habitat preference, as well as the adaptation process, of the tropical sea cucumber Stichopus chloronotus, which has specific food preferences.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!