Current concepts of bone tissue engineering for craniofacial bone defect repair.

Craniomaxillofac Trauma Reconstr

Department of Orthopaedic Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia.

Published: March 2015

Craniofacial fractures and bony defects are common causes of morbidity and contribute to increasing health care costs. Successful regeneration of bone requires the concomitant processes of osteogenesis and neovascularization. Current methods of repair and reconstruction include rigid fixation, grafting, and free tissue transfer. However, these methods carry innate complications, including plate extrusion, nonunion, graft/flap failure, and donor site morbidity. Recent research efforts have focused on using stem cells and synthetic scaffolds to heal critical-sized bone defects similar to those sustained from traumatic injury or ablative oncologic surgery. Growth factors can be used to augment both osteogenesis and neovascularization across these defects. Many different growth factor delivery techniques and scaffold compositions have been explored yet none have emerged as the universally accepted standard. In this review, we will discuss the recent literature regarding the use of stem cells, growth factors, and synthetic scaffolds as alternative methods of craniofacial fracture repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4329034PMC
http://dx.doi.org/10.1055/s-0034-1393724DOI Listing

Publication Analysis

Top Keywords

osteogenesis neovascularization
8
stem cells
8
synthetic scaffolds
8
growth factors
8
current concepts
4
bone
4
concepts bone
4
bone tissue
4
tissue engineering
4
engineering craniofacial
4

Similar Publications

The cranial mesenchyme, originating from both neural crest and mesoderm, imparts remarkable regional specificity and complexity to postnatal calvarial tissue. While the distinct embryonic origins of the superior and dura periosteum of the cranial parietal bone have been described, the extent of their respective contributions to bone and vessel formation during adult bone defect repair remains superficially explored. Utilizing transgenic mouse models in conjunction with high-resolution multiphoton laser scanning microscopy (MPLSM), we have separately evaluated bone and vessel formation in the superior and dura periosteum before and after injury, as well as following intermittent treatment of recombinant peptide of human parathyroid hormone (rhPTH), Teriparatide.

View Article and Find Full Text PDF

Introduction: FTY720 bioactive lipid has proliferative, osteoinductive, chemo attractive, and angiogenic properties, being thus a potential exogenous administered agent for promotion of bone regeneration. Herein we developed FTY720-loaded liposomes as a potential delivery system that could retain and prolong the bioactivity of the bioactive lipid and at the same time reduce its cytotoxicity (at high doses).

Methods: FTY720 liposomes were prepared by thin-lipid hydration and microfluidic flow focusing, and evaluated for their ability to induce proliferation, osteoinduction, and chemoattraction in three cell types: MC3T3-E1 pre-osteoblast cells, L929 fibroblast cells, and ATDC5 chondrogenic cells.

View Article and Find Full Text PDF
Article Synopsis
  • The prolonged use of external fixation during distraction osteogenesis (DO) can heighten complications, while bone marrow mesenchymal stem cells (BMSCs) play a crucial role in bone regeneration due to their pro-angiogenic and osteogenic abilities.
  • RSC-96, a type of Schwann cell, has been shown to promote the proliferation, migration, and differentiation of BMSCs when co-cultured, enhancing both bone formation and blood vessel development through neurotrophic factor secretion and activation of specific signaling pathways.
  • In a rat DO model, RSC-96's conditioned medium improved bone healing outcomes, with notable increases in gene expression markers for osteogenesis and angiogenesis, alongside positive radiological and biomechanical assessments.
View Article and Find Full Text PDF

EGCG-Modified Bioactive Core-Shell Fibers Modulate Oxidative Stress to Synergistically Promote Vascularized Bone Regeneration.

ACS Biomater Sci Eng

January 2025

Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, PR China.

Oxidative stress induced by reactive oxygen species (ROS) can adversely affect tissue repair, whereas endowing biomaterials with antioxidant activity can improve the in vivo microenvironment, thereby promoting angiogenesis and osteogenesis. Accordingly, this study utilized epigallocatechin-3-gallate (EGCG), a material known for its reducing properties, oxidative self-polymerization capability, and strong binding characteristics, to modify a bioactive core-shell fibrous membrane (10RP-PG). Compared to the 10RP-PG fibrous membrane, the EGCG-modified fibrous membrane (E/10RP-PG) exhibited superior hydrophilicity, excellent cell adhesion, and compatibility.

View Article and Find Full Text PDF

Regulation of the immune response is key to promoting bone regeneration by electroactive biomaterials. However, how electrical signals at the micro- and nanoscale regulate the immune response and subsequent angiogenesis during bone regeneration remains to be elucidated. Here, the distinctly different surface potential distributions on charged poly(vinylidene fluoridetrifluoroethylene) (P(VDF-TrFE)) matrix surfaces are established by altering the dimensions of ferroelectric nanofillers from 0D BaTiO nanoparticles (homogeneous surface potential distribution, HOPD) to 1D BaTiO nanofibers (heterogeneous surface potential distribution, HEPD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!