Channelrhodopsin-2 ectopically expressed in the retina can recover the response to blue light in genetically blind mice and rats, but is unable to restore visual function due to optic nerve or optic tract lesions. Long Evans rats at postnatal day 1 were used for primary culture of visual cortical cells, and 24 hours later, cells were transfected with recombinant adenovirus carrying channelrhodopsin-2 and green fluorescent protein genes. After 2-4 days of transfection, green fluorescence was visible in the cultured cells. Cells were stimulated with blue light (470 nm), and light-induced action potentials were recorded in patch-clamp experiments. Our findings indicate that channelrhodopsin-2-recombinant adenovirus transfection of primary cultured visual cortical cells can control the production of action potentials via blue light stimulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336956 | PMC |
http://dx.doi.org/10.3969/j.issn.1673-5374.2012.16.004 | DOI Listing |
Corticocortical (CC) projections in the visual system facilitate hierarchical processing of sensory information. In addition to direct CC connections, indirect cortico-thalamo-cortical (CTC) pathways through the pulvinar nucleus of the thalamus can relay sensory signals and mediate cortical interactions according to behavioral demands. While the pulvinar connects extensively to the entire visual cortex, it is unknown whether transthalamic pathways link all cortical areas or whether they follow systematic organizational rules.
View Article and Find Full Text PDFNeurology
February 2025
Departments of Child Neurology and General Practice, University of Turku and Turku University Hospital, Finland.
Background And Objectives: Previous research has demonstrated increased brain amyloid plaque load in individuals with childhood-onset epilepsy in late middle age. However, the trajectory of this process is not yet known. The aim of this study was to determine whether individuals with a history of childhood-onset epilepsy show progressive brain aging in amyloid accumulation in late adulthood (Turku Adult Childhood-Onset Epilepsy study, TACOE).
View Article and Find Full Text PDFArch Rehabil Res Clin Transl
December 2024
Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center (KUMC), Kansas City, KS.
Objective: To investigate the effects of sensory reweighting on postural control and cortical activity in individuals with Parkinson's disease (PD) compared to age-matched controls using a virtual reality sensory organization test (VR-SOT).
Design: Cross-sectional pilot study.
Setting: University research laboratory.
PLoS Biol
January 2025
Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, United States of America.
Perceptual awareness results from an intricate interaction between external sensory input and the brain's spontaneous activity. Pre-stimulus ongoing activity influencing conscious perception includes both brain oscillations in the alpha (7 to 14 Hz) and beta (14 to 30 Hz) frequency ranges and aperiodic activity in the slow cortical potential (SCP, <5 Hz) range. However, whether brain oscillations and SCPs independently influence conscious perception or do so through shared mechanisms remains unknown.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.
Myelin loss induces neural dysfunction and contributes to the pathophysiology of neurodegenerative diseases, injury conditions, and aging. Because remyelination is often incomplete, better understanding endogenous remyelination and developing remyelination therapies that restore neural function are clinical imperatives. Here, we use in vivo two-photon microscopy and electrophysiology to study the dynamics of endogenous and therapeutic-induced cortical remyelination and functional recovery after cuprizone-mediated demyelination in mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!