In vitro fibrillation of hen egg white lysozyme (HEWL) causes complete reduction of Cu(II) to Cu(I) at pH 7. Here in the present article, we have shown the presence of both Cu(II) and Cu(I) at pH 11 during fibrillation of HEWL using electron paramagnetic resonance and Raman spectroscopy. Our results suggest the existence of a partially reducing environment during fibrillation of hen egg white lysozyme at pH 11. The fibrillation process is governed by the pH of the solution and maximum fibrillation is found to occur at pH 11. Fibrils formed in the absence of Cu(II) were also found to cause significant hemolysis of RBC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2015.02.014DOI Listing

Publication Analysis

Top Keywords

hen egg
12
egg white
12
white lysozyme
12
lysozyme hewl
8
fibrillation hen
8
cuii cui
8
fibrillation
5
evidence oxidation
4
oxidation states
4
states copper
4

Similar Publications

Background/objectives: The ongoing COVID-19 pandemic has underscored the need for alternative prophylactic measures, particularly for populations for whom vaccines may not be effective or accessible. This study aims to evaluate the efficacy of intranasally administered IgY antibodies derived from hen egg yolks as a protective agent against SARS-CoV-2 infection in Syrian golden hamsters, a well-established animal model for COVID-19.

Methods: Hens were immunized with the spike protein of SARS-CoV-2 to generate IgY antibodies.

View Article and Find Full Text PDF

This research evaluated the impact of incorporating dried olive pulp (OP) into the feed of laying hens on the fatty acid profile, cholesterol, triglyceride, total phenolic, oleuropein and hydroxytyrosol content, and health lipid indices of eggs produced by mid- (39 weeks) and late-laying (59 weeks) birds. Over a 36-week trial, 300 eggs from 180 Isa-Brown hens, assigned to three dietary groups with different OP levels (CON, OP4 and OP6), were analyzed. OP reduced egg cholesterol, with significant effects in late-age eggs ( < 0.

View Article and Find Full Text PDF

This study describes the applicability of the fluorescence polarization assay (FPA) based on the use of FITC-labeled oligosaccharide tracers of defined structure for the measurement of active lysozyme in hen egg white. Depending on the oligosaccharide chain length of the tracer, this method detects both the formation of the enzyme-to-tracer complex (because of lectin-like, i.e.

View Article and Find Full Text PDF

Characterisation of the Utrerana Chicken Breed Farms in Spain.

Animals (Basel)

December 2024

Departamento de Agronomía, Universidad de Sevilla, Carretera de Utrera Km 1, 41013 Seville, Spain.

With the aim to characterise the situation of the subsector, 25 poultry farms of the endangered native Utrerana chicken egg-laying-oriented breed ( Linnaeus, 1758) were surveyed in Andalusia (southern Spain) from 2021 to 2023 to investigate the structure of the farms, number of birds, health status, feeding management, and marketing of their products. It was found that the pace of foundation of Utrerana chicken farms accelerated from 2009, and most of the farms were concentrated in the province of Seville. Only 40% of the farms were legally registered.

View Article and Find Full Text PDF

(1) Background: this study compared hydroxychloride and traditional oxide/sulfate sources of zinc (Zn), manganese (Mn), and copper (Cu) in ISA Brown pullet diets, focusing on growth, tibia strength, egg production, and eggshell quality. (2) Methods: in total, 120 pullets were divided into two groups, each with six replicates of 10 birds, receiving diets with hydroxychloride or oxide/sulfate sources of Mn, Zn, and Cu (65, 50, and 5 mg/kg, respectively) during rearing. At 16 weeks, 18 pullets per group transitioned to individual cages and were fed a standard diet with Mn-oxide, Zn-oxide, and Cu-sulfate until 50 weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!