Macrostructures based on natural polymers are subject to large attention, as the application range is wide within the food and pharmaceutical industries. In this study we present nanocomplexes (NCXs) made from electrostatic self-assembly between negatively charged alginate and positively charged fish sarcoplasmic proteins (FSP), prepared by bulk mixing. A concentration screening revealed that there was a range of alginate and FSP concentrations where stable NCXs with similar properties were formed, rather than two exact concentrations. The size of the NCXs was 293 ± 3 nm, and the zeta potential was -42 ± 0.3 mV. The NCXs were stable in water, gastric buffer, intestinal buffer and HEPES buffered glycose, and at all pH values from 2 to 9 except pH 3, where they aggregated. When proteolytic enzymes were present in the buffer, the NCXs were degraded. Only at high concentrations the NCXs caused a decreased viability in HeLa and U2OS cell lines. The simple processing procedure and the high stability of the NCXs, makes them excellent candidates for use in the food and pharmaceutical industry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2015.02.018DOI Listing

Publication Analysis

Top Keywords

fish sarcoplasmic
8
food pharmaceutical
8
ncxs
7
design characterization
4
characterization self-assembled
4
self-assembled fish
4
sarcoplasmic protein-alginate
4
protein-alginate nanocomplexes
4
nanocomplexes macrostructures
4
macrostructures based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!