Real-time tracking of cell cycle progression during CD8+ effector and memory T-cell differentiation.

Nat Commun

1] Immune Imaging Program, Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales 2042, Australia [2] Discipline of Dermatology, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia [3] Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia.

Published: February 2015

The precise pathways of memory T-cell differentiation are incompletely understood. Here we exploit transgenic mice expressing fluorescent cell cycle indicators to longitudinally track the division dynamics of individual CD8(+) T cells. During influenza virus infection in vivo, naive T cells enter a CD62L(intermediate) state of fast proliferation, which continues for at least nine generations. At the peak of the anti-viral immune response, a subpopulation of these cells markedly reduces their cycling speed and acquires a CD62L(hi) central memory cell phenotype. Construction of T-cell family division trees in vitro reveals two patterns of proliferation dynamics. While cells initially divide rapidly with moderate stochastic variations of cycling times after each generation, a slow-cycling subpopulation displaying a CD62L(hi) memory phenotype appears after eight divisions. Phenotype and cell cycle duration are inherited by the progeny of slow cyclers. We propose that memory precursors cell-intrinsically modulate their proliferative activity to diversify differentiation pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4346633PMC
http://dx.doi.org/10.1038/ncomms7301DOI Listing

Publication Analysis

Top Keywords

cell cycle
12
memory t-cell
8
t-cell differentiation
8
memory
5
real-time tracking
4
cell
4
tracking cell
4
cycle progression
4
progression cd8+
4
cd8+ effector
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!